NCERT Solutions for Class 12 Physics Chapter 13: Nuclei

Jasmine Grover logo

Jasmine Grover Content Strategy Manager

Content Strategy Manager

NCERT Solutions for class 12 physics chapter 13 Nuclei are given in this article. Atomic Nucleus is the small, dense and central part of the Atom consisting of Protons, which are positively charged and Neutrons, which are electrically neutral containing more than 99.9% of the mass of an atom and are ten thousand times smaller than an atom.

Unit 8 Atoms and Nuclei along with Unit 7 Dual Nature of Radiation and Matter has a weightage of 12 marks in the CBSE Board examinations. NCERT Solutions Class 12 Physics Chapter 13 covers concepts of Mass-Energy and Nuclear Binding EnergyRadioactive Decay, and Nuclear Energy.

Download PDF: NCERT Solutions for Class 12 Physics Chapter 13


NCERT Solutions for Class 12 Physics Chapter 13

The NCERT solutions for class 12 physics chapter 13: Nuclei are given below.

Ncert solutions

Ncert solutions

Ncert solutions

Ncert solutons

Ncert solutions

Ncert solutions

Ncert solutions

Ncert Solutions

Ncert Solutions

Ncert Solutions

Ncert Solutions

Ncert soluions

Ncert solutions

Ncert solutions

Ncert solutions

Ncert Solutions

Ncert Solutions

Ncert Solutions

Ncert Solutions

Ncert Solutions

Ncert Solutions

Ncert solutions

Ncert solutions

Ncert solutions

Ncert solutions

Ncert solutions


Class 12 Physics Chapter 13 Nuclei – Topics Covered

  • Atomic Mass Unit (amu): The unit used to express atomic masses is known as the atomic mass unit. It is defined as 1/12th of the mass of a Carbon atom (C12).
1 u = 1.660539 x 10-27 kg
  • Atomic number of an element refers to the number of protons that are present inside the nucleus of an atom of an element.
Atomic number = Number of protons = Number of electrons
  • Mass number of an element refers to the total number of protons and neutrons inside the atomic nucleus of the element.
Mass number = Number of protons + Number of neutrons = Number of electrons + Number of neutrons i.e. A = Z + N
  • Size of Nucleus: If R is the radius of the nucleus that has mass number A, then the size of the nucleus can be represented by:
\({4 \over 3} \pi R^3 \propto A => R \propto A^{1/3} => R = R_0A^{1 \over 3}\)
  • Radioactivity Decay Law: According to the Radioactive Decay law, the rate of decay of radioactive atoms at any instant is directly proportional to the number of atoms present at that instant.
\({dN \over dt} \propto N, {dN \over dt}=\ - \lambda N\)

Also Read:

Check-Out: 

CBSE CLASS XII Related Questions

  • 1.
    State any three characteristics of electromagnetic waves.


      • 2.
        Two cells of emf 10 V each, two resistors of 20 \( \Omega \) and 10 \( \Omega \), and a bulb B of 10 \( \Omega \) resistance are connected together as shown in the figure. Find the current that flows through the bulb.
        Two cells of emf 10 V each, two resistors


          • 3.
            Two point charges \( 5 \, \mu C \) and \( -1 \, \mu C \) are placed at points \( (-3 \, \text{cm}, 0, 0) \) and \( (3 \, \text{cm}, 0, 0) \), respectively. An external electric field \( \vec{E} = \frac{A}{r^2} \hat{r} \) where \( A = 3 \times 10^5 \, \text{V m} \) is switched on in the region. Calculate the change in electrostatic energy of the system due to the electric field.


              • 4.

                A battery of emf \( E \) and internal resistance \( r \) is connected to a rheostat. When a current of 2A is drawn from the battery, the potential difference across the rheostat is 5V. The potential difference becomes 4V when a current of 4A is drawn from the battery. Calculate the value of \( E \) and \( r \).


                  • 5.
                    In an intrinsic semiconductor, carrier’s concentration is \( 5 \times 10^8 \ \text{m}^{-3} \). On doping with impurity atoms, the hole concentration becomes \( 8 \times 10^{12} \ \text{m}^{-3} \).

                    [(a)] Identify (i) the type of dopant and (ii) the extrinsic semiconductor so formed.

                    [(b)] Calculate the electron concentration in the extrinsic semiconductor.


                      • 6.
                        In the given figure, three identical bulbs P, Q, and S are connected to a battery.
                        three identical bulbs P, Q, and S

                        [(i)] Compare the brightness of bulbs P and Q with that of bulb S when key K is closed.

                        [(ii)] Compare the brightness of the bulbs S and Q when the key K is opened.
                        Justify your answer in both cases.

                          CBSE CLASS XII Previous Year Papers

                          Comments


                          No Comments To Show