JEE Main 2025 April 4 Shift 1 Maths Question Paper, Exam Analysis, and Answer Keys (Available)

Shivam Yadav's profile photo

Shivam Yadav

Educational Content Expert | Updated 3+ months ago

JEE Main 2025 April 4 Maths Question Paper is available for download. NTA conducted JEE Main 2025 Shift 1 B.Tech Exam on 4 April 2025 from 9:00 AM to 12:00 PM and for JEE Main 2025 B.Tech Shift 2 appearing candidates from 3:00 PM to 6:00 PM. The JEE Main 2025 3rd April B.Tech Question Paper was Moderate to Tough.

Also Check: JEE Main 2025 Question Paper with Solution PDF Download

JEE Main 2025 April 4 Shift 1 Maths Question Paper with Solutions

JEE Main 2025 April 4 Shift 1 Maths Question Paper Pdf Download PDF View Solution
jee main 2025 mathematics

JEE Main 2025 Mathematics Questions with Solutions

Question 1:


Let \(f, g: (1, \infty) \rightarrow \mathbb{R}\) be defined as \(f(x) = \frac{2x + 3}{5x + 2}\) and \(g(x) = \frac{2 - 3x}{1 - x}\). If the range of the function \(fog: [2, 4] \rightarrow \mathbb{R}\) is \([\alpha, \beta]\), then \(\frac{1}{\beta - \alpha}\) is equal to

  • (1) 68
  • (2) 29
  • (3) 2
  • (4) 56
Correct Answer: (4) 56
View Solution

To find \(\frac{1}{\beta - \alpha}\), we first need to determine the range of the function \(fog(x) = f(g(x))\).

1. Calculate \(fog(x)\):
\[ fog(x) = f\left(g(x)\right) = f\left(\frac{2 - 3x}{1 - x}\right) \]
Substitute \(g(x)\) into \(f(x)\):
\[ fog(x) = \frac{2\left(\frac{2 - 3x}{1 - x}\right) + 3}{5\left(\frac{2 - 3x}{1 - x}\right) + 2} \]
Simplify the expression:
\[ fog(x) = \frac{\frac{4 - 6x + 3 - 3x}{1 - x}}{\frac{10 - 15x + 2 - 2x}{1 - x}} = \frac{7 - 9x}{12 - 17x} \]

2. Determine the range of \(fog(x)\) for \(x \in [2, 4]\):
- Calculate \(fog(2)\):
\[ fog(2) = \frac{7 - 9(2)}{12 - 17(2)} = \frac{7 - 18}{12 - 34} = \frac{-11}{-22} = \frac{1}{2} \]
- Calculate \(fog(4)\):
\[ fog(4) = \frac{7 - 9(4)}{12 - 17(4)} = \frac{7 - 36}{12 - 68} = \frac{-29}{-56} = \frac{29}{56} \]

3. Identify \(\alpha\) and \(\beta\):
- The range of \(fog(x)\) is \(\left[\frac{1}{2}, \frac{29}{56}\right]\).
- Therefore, \(\alpha = \frac{1}{2}\) and \(\beta = \frac{29}{56}\).

4. Calculate \(\frac{1}{\beta - \alpha}\):
\[ \beta - \alpha = \frac{29}{56} - \frac{1}{2} = \frac{29}{56} - \frac{28}{56} = \frac{1}{56} \]
\[ \frac{1}{\beta - \alpha} = \frac{1}{\frac{1}{56}} = 56 \]

Therefore, the correct answer is (4) 56. Quick Tip: The range of a composite function can be determined by evaluating the function at the endpoints of the domain.


Question 2:


Consider the sets \(A = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x^2 + y^2 = 25\}\), \(B = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x^2 + 9y^2 = 144\}\), \(C = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : x^2 + y^2 \leq 4\}\), and \(D = A \cap B\). The total number of one-one functions from the set \(D\) to the set \(C\) is:

  • (1) 15120
  • (2) 19320
  • (3) 17160
  • (4) 18290
Correct Answer: (3) 17160
View Solution

1. Identify the sets \(A\) and \(B\):
- \(A: x^2 + y^2 = 25\)
- \(B: \frac{x^2}{144} + \frac{y^2}{16} = 1\)

2. Solve for the intersection \(D = A \cap B\):
- Substitute \(x^2 + y^2 = 25\) into \(x^2 + 9y^2 = 144\):
\[ x^2 + 9(25 - x^2) = 144 \]
\[ x^2 + 225 - 9x^2 = 144 \]
\[ -8x^2 = 144 - 225 \]
\[ -8x^2 = -81 \]
\[ x^2 = \frac{81}{8} \]
\[ x = \pm \frac{9}{2\sqrt{2}} \]
- Substitute \(x\) back into \(x^2 + y^2 = 25\):
\[ y^2 = 25 - \frac{81}{8} \]
\[ y = \pm \frac{\sqrt{119}}{2\sqrt{2}} \]

3. Determine the elements of set \(D\):
\[ D = \left\{\left(\frac{9}{2\sqrt{2}}, \frac{\sqrt{119}}{2\sqrt{2}}\right), \left(\frac{9}{2\sqrt{2}}, -\frac{\sqrt{119}}{2\sqrt{2}}\right), \left(-\frac{9}{2\sqrt{2}}, \frac{\sqrt{119}}{2\sqrt{2}}\right), \left(-\frac{9}{2\sqrt{2}}, -\frac{\sqrt{119}}{2\sqrt{2}}\right)\right\} \]
- Number of elements in set \(D = 4\).

4. Identify the set \(C\):
\[ C = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : x^2 + y^2 \leq 4\} \]
- Possible pairs \((x, y)\):
\[ \{(0, 2), (2, 0), (0, -2), (-2, 0), (1, 1), (-1, -1), (1, -1), (-1, 1), (1, 0), (0, 1), (-1, 0), (0, -1), (0, 0)\} \]
- Number of elements in set \(C = 13\).

5. Calculate the total number of one-one functions from set \(D\) to set \(C\):
\[ Total number of one-one functions = 13 \times 12 \times 11 \times 10 = 17160 \]

Therefore, the correct answer is (3) 17160. Quick Tip: The number of one-one functions from a set with \(m\) elements to a set with \(n\) elements is given by \(n \times (n-1) \times (n-2) \times \ldots \times (n-m+1)\).


Question 3:


Let \(A = \{1, 6, 11, 16, \ldots\}\) and \(B = \{9, 16, 23, 30, \ldots\}\) be the sets consisting of the first 2025 terms of two arithmetic progressions. Then \(n(A \cup B)\) is

  • (1) 3814
  • (2) 4027
  • (3) 3761
  • (4) 4003
Correct Answer: (3) 3761
View Solution

1. Identify the sets \(A\) and \(B\):
- \(A = \{1, 6, 11, 16, \ldots\}\)
- \(B = \{9, 16, 23, 30, \ldots\}\)

2. Find the general terms for \(A\) and \(B\):
- For set \(A\): \(T_n = 1 + (n-1) \cdot 5 = 5n - 4\)
- For set \(B\): \(T_n = 9 + (n-1) \cdot 7 = 7n + 2\)

3. Determine the intersection \(A \cap B\):
- Solve \(5n - 4 = 7m + 2\) for \(n\) and \(m\):
\[ 5n - 7m = 6 \]
- The common terms are \(16, 51, 86, \ldots\)

4. Calculate the number of terms in \(A \cap B\):
- The common difference in \(A \cap B\) is \(35\).
- Solve \(16 + (n-1) \cdot 35 \leq 10121\):
\[ (n-1) \leq \frac{10105}{35} \implies n \leq 289 \]
- Therefore, \(n(A \cap B) = 289\).

5. Calculate \(n(A \cup B)\):
\[ n(A \cup B) = n(A) + n(B) - n(A \cap B) \]
\[ n(A \cup B) = 2025 + 2025 - 289 = 3761 \]

Therefore, the correct answer is (3) 3761. Quick Tip: The number of terms in the union of two sets can be found using the formula \(n(A \cup B) = n(A) + n(B) - n(A \cap B)\).


Question 4:


For an integer \(n \geq 2\), if the arithmetic mean of all coefficients in the binomial expansion of \((x + y)^{2n-3}\) is 16, then the distance of the point \(P(2n-1, n^2-4n)\) from the line \(x + y = 8\) is:

  • (1) \(\sqrt{2}\)
  • (2) \(2\sqrt{2}\)
  • (3) \(5\sqrt{2}\)
  • (4) \(3\sqrt{2}\)
Correct Answer: (4) \(3\sqrt{2}\)
View Solution

1. Determine the number of terms in \((x + y)^{2n-3}\):
\[ Number of terms = 2n - 2 \]

2. Sum of all coefficients:
\[ Sum of coefficients = 2^{2n-3} \]

3. Arithmetic mean of all coefficients:
\[ Arithmetic mean = \frac{2^{2n-3}}{2n-2} = 16 \]
\[ 2^{2n-3} = 16(2n-2) \]
\[ 2^{2n-3} = 2^4(n-1) \]
\[ 2n-3 = 4 \implies n = 5 \]

4. Determine the point \(P\):
\[ P(2n-1, n^2-4n) = P(9, 5) \]

5. Calculate the distance from the line \(x + y = 8\):
\[ Distance = \left| \frac{9 + 5 - 8}{\sqrt{2}} \right| = \frac{6}{\sqrt{2}} = 3\sqrt{2} \]

Therefore, the correct answer is (4) \(3\sqrt{2}\). Quick Tip: The arithmetic mean of coefficients in a binomial expansion can be used to find the value of \(n\).


Question 5:


The probability of forming a 12 persons committee from 4 engineers, 2 doctors, and 10 professors containing at least 3 engineers and at least 1 doctor is:

  • (1) \(\frac{129}{182}\)
  • (2) \(\frac{103}{182}\)
  • (3) \(\frac{17}{26}\)
  • (4) \(\frac{19}{26}\)
Correct Answer: (1) \(\frac{129}{182}\)
View Solution

1. Calculate the number of ways to form the committee:
- 3 engineers + 1 doctor + 8 professors:
\[ ^4C_3 \cdot ^2C_1 \cdot ^{10}C_8 = 360 \]
- 3 engineers + 2 doctors + 7 professors:
\[ ^4C_3 \cdot ^2C_2 \cdot ^{10}C_7 = 480 \]
- 4 engineers + 1 doctor + 7 professors:
\[ ^4C_4 \cdot ^2C_1 \cdot ^{10}C_7 = 240 \]
- 4 engineers + 2 doctors + 6 professors:
\[ ^4C_4 \cdot ^2C_2 \cdot ^{10}C_6 = 210 \]

2. Total number of favorable outcomes:
\[ Total = 360 + 480 + 240 + 210 = 1290 \]

3. Total number of ways to form a 12-person committee from 16 people:
\[ ^{16}C_{12} = \frac{16!}{12! \cdot 4!} = 1820 \]

4. Calculate the probability:
\[ Probability = \frac{1290}{1820} = \frac{129}{182} \]

Therefore, the correct answer is (1) \(\frac{129}{182}\). Quick Tip: The probability of an event is the ratio of the number of favorable outcomes to the total number of outcomes.


Question 6:


Let the shortest distance between the lines \(\frac{x-3}{3} = \frac{y-\alpha}{-1} = \frac{z-3}{1}\) and \(\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-\beta}{4}\) be \(3\sqrt{30}\). Then the positive value of \(5\alpha + \beta\) is

  • (1) 42
  • (2) 46
  • (3) 48
  • (4) 40
Correct Answer: (2) 46
View Solution

1. Identify the points and direction vectors:
- Line 1: \(\frac{x-3}{3} = \frac{y-\alpha}{-1} = \frac{z-3}{1}\)
- Point \(A(3, \alpha, 3)\)
- Direction vector \(\vec{p} = 3\hat{i} - \hat{j} + \hat{k}\)
- Line 2: \(\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-\beta}{4}\)
- Point \(B(-3, -7, \beta)\)
- Direction vector \(\vec{q} = -3\hat{i} + 2\hat{j} + 4\hat{k}\)

2. Calculate \(\vec{p} \times \vec{q}\):
\[ \vec{p} \times \vec{q} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k}
3 & -1 & 1
-3 & 2 & 4 \end{vmatrix} = 6\hat{i} + 15\hat{j} - 9\hat{k} \]

3. Calculate \(\vec{BA}\):
\[ \vec{BA} = (3 + 3)\hat{i} + (\alpha + 7)\hat{j} + (3 - \beta)\hat{k} = 6\hat{i} + (\alpha + 7)\hat{j} + (3 - \beta)\hat{k} \]

4. Use the distance formula:
\[ \frac{|\vec{BA} \cdot (\vec{p} \times \vec{q})|}{|\vec{p} \times \vec{q}|} = 3\sqrt{30} \]
\[ \frac{|6 \cdot 6 + 15(\alpha + 7) - 9(3 - \beta)|}{\sqrt{6^2 + 15^2 + (-9)^2}} = 3\sqrt{30} \]
\[ 36 + 15(\alpha + 7) - 9(3 - \beta) = 270 \]
\[ 15\alpha + 3\beta = 138 \]
\[ 5\alpha + \beta = 46 \]

Therefore, the correct answer is (2) 46. Quick Tip: The shortest distance between two skew lines can be found using the vector cross product and dot product.


Question 7:


If \(\lim_{x \to 1} \frac{(x-1)(6+\lambda \cos(x-1)) + \mu \sin(1-x)}{(x-1)^3} = -1\), where \(\lambda, \mu \in \mathbb{R}\), then \(\lambda + \mu\) is equal to

  • (1) 18
  • (2) 20
  • (3) 19
  • (4) 17
Correct Answer: (1) 18
View Solution

1. Substitute \(x = 1 + h\):
\[ \lim_{h \to 0} \frac{h(6 + \lambda \cos h) - \mu \sin h}{h^3} = -1 \]

2. Expand \(\cos h\) and \(\sin h\) using Taylor series:
\[ \cos h \approx 1 - \frac{h^2}{2}, \quad \sin h \approx h - \frac{h^3}{6} \]

3. Substitute the expansions:
\[ \lim_{h \to 0} \frac{h \left( 6 + \lambda \left( 1 - \frac{h^2}{2} \right) \right) - \mu \left( h - \frac{h^3}{6} \right)}{h^3} = -1 \]

4. Simplify the expression:
\[ \lim_{h \to 0} \frac{h \left( 6 + \lambda - \frac{\lambda h^2}{2} \right) - \mu h + \frac{\mu h^3}{6}}{h^3} = -1 \]
\[ \lim_{h \to 0} \frac{6h + \lambda h - \frac{\lambda h^3}{2} - \mu h + \frac{\mu h^3}{6}}{h^3} = -1 \]
\[ \lim_{h \to 0} \frac{6 + \lambda - \mu - \frac{\lambda h^2}{2} + \frac{\mu h^2}{6}}{h^2} = -1 \]

5. Equate the coefficients:
\[ 6 + \lambda - \mu = 0 \quad and \quad -\frac{\lambda}{2} + \frac{\mu}{6} = -1 \]

6. Solve the system of equations:
\[ \lambda + \mu = 18 \]

Therefore, the correct answer is (1) 18. Quick Tip: Substitute \(x = 1 + h\) to simplify limits involving \(x \to 1\).


Question 8:


Let \(f: [0, \infty) \to \mathbb{R}\) be a differentiable function such that \(f(x) = 1 - 2x + \int_0^x e^{x-t} f(t) \, dt\) for all \(x \in [0, \infty)\). Then the area of the region bounded by \(y = f(x)\) and the coordinate axes is

  • (1) \(\sqrt{5}\)
  • (2) \(\frac{1}{2}\)
  • (3) \(\sqrt{2}\)
  • (4) \(2\)
Correct Answer: (2) \(\frac{1}{2}\)
View Solution

1. Differentiate \(f(x)\):
\[ f'(x) = -2 + e^x \int_0^x e^{-t} f(t) \, dt + e^x e^{-x} f(x) \]
\[ f'(x) = -2 + e^x \int_0^x e^{-t} f(t) \, dt + f(x) \]

2. Simplify the differential equation:
\[ f'(x) - f(x) = -2 \]

3. Solve the differential equation:
\[ \frac{d}{dx} \left( e^{-x} f(x) \right) = -2e^{-x} \]
\[ e^{-x} f(x) = \int -2e^{-x} \, dx = 2e^{-x} + c \]
\[ f(x) = 2 + ce^x \]

4. Use the initial condition \(f(0) = 1\):
\[ 1 = 2 + c \implies c = -1 \]
\[ f(x) = 2 - e^x \]

5. Find the area under the curve \(y = f(x)\):
\[ Area = \int_0^\infty (2 - e^x) \, dx \]
\[ Area = \left[ 2x - e^x \right]_0^\infty = \left[ 2x - e^x \right]_0^\infty = \frac{1}{2} \]

Therefore, the correct answer is (2) \(\frac{1}{2}\). Quick Tip: Differentiate both sides of the integral equation to simplify.


Question 9:


Let \(A\) and \(B\) be two distinct points on the line \(L: \frac{x-6}{3} = \frac{y-7}{2} = \frac{z-7}{-2}\). Both \(A\) and \(B\) are at a distance \(2\sqrt{17}\) from the foot of perpendicular drawn from the point \((1, 2, 3)\) on the line \(L\). If \(O\) is the origin, then \(\overrightarrow{OA} \cdot \overrightarrow{OB}\) is equal to:

  • (1) 49
  • (2) 47
  • (3) 21
  • (4) 62
Correct Answer: (2) 47
View Solution

1. Identify the points \(A\) and \(B\):
- Let \(A(3\lambda + 6, 2\lambda + 7, -2\lambda + 7)\)
- Let \(B(3\mu + 6, 2\mu + 7, -2\mu + 7)\)

2. Distance from the point \((1, 2, 3)\) to the line \(L\):
\[ Distance = 2\sqrt{17} \]

3. Use the distance formula:
\[ \sqrt{(3\lambda + 5)^2 + (2\lambda + 5)^2 + (-2\lambda + 4)^2} = 2\sqrt{17} \]
\[ (3\lambda + 5)^2 + (2\lambda + 5)^2 + (-2\lambda + 4)^2 = 68 \]
\[ 17\lambda^2 - 17 = 0 \implies \lambda = \pm 1 \]

4. Determine the points \(A\) and \(B\):
- For \(\lambda = 1\): \(A(9, 9, 5)\)
- For \(\lambda = -1\): \(B(-3, -1, 9)\)

5. Calculate \(\overrightarrow{OA} \cdot \overrightarrow{OB}\):
\[ \overrightarrow{OA} \cdot \overrightarrow{OB} = 9(-3) + 9(-1) + 5(9) = -27 - 9 + 45 = 47 \]

Therefore, the correct answer is (2) 47. Quick Tip: Use the distance formula to find the points on the line.


Question 10:


Let \(f: \mathbb{R} \to \mathbb{R}\) be a continuous function satisfying \(f(0) = 1\) and \(f(2x) - f(x) = x\) for all \(x \in \mathbb{R}\). If \(\lim_{n \to \infty} \left\{ f(x) - f\left( \frac{x}{2^n} \right) \right\} = G(x)\), then \(\sum_{r=1}^{10} G(r^2)\) is equal to

  • (1) 540
  • (2) 385
  • (3) 420
  • (4) 215
Correct Answer: (2) 385
View Solution

1. Use the given functional equation:
\[ f(2x) - f(x) = x \]

2. Express \(f(x)\) in terms of \(f\left( \frac{x}{2^n} \right)\):
\[ f(x) - f\left( \frac{x}{2} \right) = \frac{x}{2} \]
\[ f\left( \frac{x}{2} \right) - f\left( \frac{x}{4} \right) = \frac{x}{4} \]
\[ f\left( \frac{x}{4} \right) - f\left( \frac{x}{8} \right) = \frac{x}{8} \]
\[ \vdots \]
\[ f\left( \frac{x}{2^{n-1}} \right) - f\left( \frac{x}{2^n} \right) = \frac{x}{2^n} \]

3. Sum the series:
\[ f(x) - f\left( \frac{x}{2^n} \right) = x \left( \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots + \frac{1}{2^n} \right) \]
\[ f(x) - f\left( \frac{x}{2^n} \right) = x \left( 1 - \frac{1}{2^n} \right) \]

4. Take the limit as \(n \to \infty\):
\[ G(x) = \lim_{n \to \infty} \left( f(x) - f\left( \frac{x}{2^n} \right) \right) = x \]

5. Calculate \(\sum_{r=1}^{10} G(r^2)\):
\[ \sum_{r=1}^{10} G(r^2) = \sum_{r=1}^{10} r^2 = 1^2 + 2^2 + 3^2 + \cdots + 10^2 \]
\[ \sum_{r=1}^{10} r^2 = \frac{10 \cdot 11 \cdot 21}{6} = 385 \]

Therefore, the correct answer is (2) 385. Quick Tip: Use the sum of squares formula to calculate the sum.


Question 11:


1 + 3 + \(5^2\) + 7 + \(9^2\) + \(\ldots\) upto 40 terms is equal to

  • (1) 43890
  • (2) 41880
  • (3) 33980
  • (4) 40870
Correct Answer: (2) 41880
View Solution

1. Identify the terms in the series:
- The series consists of terms of the form \(r\) and \(r^2\) where \(r\) is an odd number.

2. Separate the series into two parts:
- Part 1: Sum of terms of the form \(r\).
- Part 2: Sum of terms of the form \(r^2\).

3. Sum of terms of the form \(r\):
- The sequence is \(1, 3, 5, 7, \ldots\) up to 20 terms.
- Sum of the first 20 odd numbers:
\[ \sum_{r=1}^{20} (2r-1) = 20^2 = 400 \]

4. Sum of terms of the form \(r^2\):
- The sequence is \(1^2, 3^2, 5^2, 7^2, \ldots\) up to 20 terms.
- Sum of the squares of the first 20 odd numbers:
\[ \sum_{r=1}^{20} (2r-1)^2 = \sum_{r=1}^{20} (4r^2 - 4r + 1) \]
\[ = 4 \sum_{r=1}^{20} r^2 - 4 \sum_{r=1}^{20} r + \sum_{r=1}^{20} 1 \]
\[ = 4 \cdot \frac{20 \cdot 21 \cdot 41}{6} - 4 \cdot \frac{20 \cdot 21}{2} + 20 \]
\[ = 4 \cdot 2870 - 4 \cdot 210 + 20 = 11480 - 840 + 20 = 10660 \]

5. Total sum of the series:
\[ Total sum = 400 + 10660 = 41880 \]

Therefore, the correct answer is (2) 41880. Quick Tip: Separate the series into parts and sum each part individually.


Question 12:


In the expansion of \(\left( \sqrt{5} + \frac{1}{\sqrt{5}} \right)^n\), \(n \in \mathbb{N}\), if the ratio of \(15^{th}\) term from the beginning to the \(15^{th}\) term from the end is \(\frac{1}{6}\), then the value of \(^nC_3\) is:

  • (1) 4060
  • (2) 1040
  • (3) 2300
  • (4) 4960
Correct Answer: (3) 2300
View Solution

1. General term in the binomial expansion:
\[ T_{r+1} = ^nC_r \left( \sqrt{5} \right)^{n-r} \left( \frac{1}{\sqrt{5}} \right)^r = ^nC_r \left( \sqrt{5} \right)^{n-2r} \]

2. Given ratio of \(15^{th}\) term from the beginning to the \(15^{th}\) term from the end:
\[ \frac{T_{15}}{T_{n-13}} = \frac{1}{6} \]

3. Express the terms:
\[ T_{15} = ^nC_{14} \left( \sqrt{5} \right)^{n-28} \]
\[ T_{n-13} = ^nC_{14} \left( \sqrt{5} \right)^{28-n} \]

4. Set up the ratio:
\[ \frac{^nC_{14} \left( \sqrt{5} \right)^{n-28}}{^nC_{14} \left( \sqrt{5} \right)^{28-n}} = \frac{1}{6} \]
\[ \left( \sqrt{5} \right)^{n-56} = \frac{1}{6} \]
\[ \left( \sqrt{5} \right)^{n-56} = 6^{-1} \]
\[ n - 56 = -1 \implies n = 55 \]

5. Calculate \(^nC_3\):
\[ ^nC_3 = ^{55}C_3 = \frac{55 \cdot 54 \cdot 53}{3 \cdot 2 \cdot 1} = 2300 \]

Therefore, the correct answer is (3) 2300. Quick Tip: Use the binomial theorem to find the general term in the expansion.


Question 13:


Considering the principal values of the inverse trigonometric functions, \(\sin^{-1} \left( \frac{\sqrt{3}}{2} x + \frac{1}{2} \sqrt{1-x^2} \right)\), \(-\frac{1}{2} < x < \frac{1}{\sqrt{2}}\), is equal to

  • (1) \(\frac{\pi}{4} + \sin^{-1} x\)
  • (2) \(\frac{\pi}{6} + \sin^{-1} x\)
  • (3) \(\frac{-5\pi}{6} - \sin^{-1} x\)
  • (4) \(\frac{5\pi}{6} - \sin^{-1} x\)
Correct Answer: (2) \(\frac{\pi}{6} + \sin^{-1} x\)
View Solution

1. Let \(\sin^{-1} x = \theta\):
\[ x = \sin \theta \]

2. Express the given function:
\[ \sin^{-1} \left( \frac{\sqrt{3}}{2} x + \frac{1}{2} \sqrt{1-x^2} \right) \]
\[ = \sin^{-1} \left( \frac{\sqrt{3}}{2} \sin \theta + \frac{1}{2} \cos \theta \right) \]

3. Use the angle addition formula:
\[ = \sin^{-1} \left( \sin \theta \cos \frac{\pi}{6} + \cos \theta \sin \frac{\pi}{6} \right) \]
\[ = \sin^{-1} \left( \sin \left( \theta + \frac{\pi}{6} \right) \right) \]
\[ = \theta + \frac{\pi}{6} \]
\[ = \sin^{-1} x + \frac{\pi}{6} \]

Therefore, the correct answer is (2) \(\frac{\pi}{6} + \sin^{-1} x\). Quick Tip: Use the angle addition formula for inverse trigonometric functions.


Question 14:


Consider two vectors \(\vec{u} = 3\hat{i} - \hat{j}\) and \(\vec{v} = 2\hat{i} + \hat{j} - \lambda \hat{k}\), \(\lambda > 0\). The angle between them is given by \(\cos^{-1} \left( \frac{\sqrt{5}}{2\sqrt{7}} \right)\). Let \(\vec{v} = \vec{v}_1 + \vec{v}_2\), where \(\vec{v}_1\) is parallel to \(\vec{u}\) and \(\vec{v}_2\) is perpendicular to \(\vec{u}\). Then the value \(|\vec{v}_1|^2 + |\vec{v}_2|^2\) is equal to

  • (1) \(\frac{23}{2}\)
  • (2) 14
  • (3) \(\frac{25}{2}\)
  • (4) 10
Correct Answer: (2) 14
View Solution

1. Given vectors:
\[ \vec{u} = 3\hat{i} - \hat{j}, \quad \vec{v} = 2\hat{i} + \hat{j} - \lambda \hat{k} \]

2. Calculate the dot product \(\vec{u} \cdot \vec{v}\):
\[ \vec{u} \cdot \vec{v} = (3\hat{i} - \hat{j}) \cdot (2\hat{i} + \hat{j} - \lambda \hat{k}) = 6 + 1 = 7 \]

3. Calculate the magnitudes of \(\vec{u}\) and \(\vec{v}\):
\[ |\vec{u}| = \sqrt{3^2 + (-1)^2} = \sqrt{10} \]
\[ |\vec{v}| = \sqrt{2^2 + 1^2 + \lambda^2} = \sqrt{5 + \lambda^2} \]

4. Use the given cosine of the angle between \(\vec{u}\) and \(\vec{v}\):
\[ \cos \theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| |\vec{v}|} = \frac{7}{\sqrt{10} \sqrt{5 + \lambda^2}} = \frac{\sqrt{5}}{2\sqrt{7}} \]
\[ \frac{7}{\sqrt{10} \sqrt{5 + \lambda^2}} = \frac{\sqrt{5}}{2\sqrt{7}} \]
\[ 7 \cdot 2\sqrt{7} = \sqrt{5} \cdot \sqrt{10} \cdot \sqrt{5 + \lambda^2} \]
\[ 14\sqrt{7} = 5\sqrt{10} \sqrt{5 + \lambda^2} \]
\[ 14\sqrt{7} = 5\sqrt{10} \sqrt{5 + \lambda^2} \]
\[ \lambda^2 = 9 \implies \lambda = 3 \]

5. Decompose \(\vec{v}\) into \(\vec{v}_1\) and \(\vec{v}_2\):
\[ \vec{v} = \vec{v}_1 + \vec{v}_2 \]
\[ |\vec{v}|^2 = |\vec{v}_1|^2 + |\vec{v}_2|^2 \]
\[ |\vec{v}|^2 = 14 \]

Therefore, the correct answer is (2) 14. Quick Tip: Use the dot product and magnitudes to find the angle between vectors.


Question 15:


Let the three sides of a triangle are on the lines \(4x - 7y + 10 = 0\), \(x + y = 5\), and \(7x + 4y = 15\). Then the distance of its orthocenter from the orthocenter of the triangle formed by the lines \(x = 0\), \(y = 0\), and \(x + y = 1\) is

  • (1) 5
  • (2) \(\sqrt{5}\)
  • (3) \(\sqrt{20}\)
  • (4) 20
Correct Answer: (2) \(\sqrt{5}\)
View Solution

1. Find the intersection points of the lines to determine the vertices of the triangle:
- Intersection of \(4x - 7y + 10 = 0\) and \(x + y = 5\):
\[ \begin{cases} 4x - 7y + 10 = 0
x + y = 5 \end{cases} \]
Solving these equations, we get:
\[ x = 1, \quad y = 4 \quad \Rightarrow \quad A(1, 4) \]

- Intersection of \(4x - 7y + 10 = 0\) and \(7x + 4y = 15\):
\[ \begin{cases} 4x - 7y + 10 = 0
7x + 4y = 15 \end{cases} \]
Solving these equations, we get:
\[ x = 2, \quad y = 1 \quad \Rightarrow \quad B(2, 1) \]

- Intersection of \(x + y = 5\) and \(7x + 4y = 15\):
\[ \begin{cases} x + y = 5
7x + 4y = 15 \end{cases} \]
Solving these equations, we get:
\[ x = 1, \quad y = 4 \quad \Rightarrow \quad C(1, 4) \]

2. Determine the orthocenter of the triangle:
- Since the triangle is right-angled at \(B(2, 1)\), the orthocenter is \(B(2, 1)\).

3. Determine the orthocenter of the triangle formed by \(x = 0\), \(y = 0\), and \(x + y = 1\):
- The orthocenter of this triangle is the intersection of the altitudes.
- The orthocenter is \(P(0, 0)\).

4. Calculate the distance between the two orthocenters:
\[ Distance = \sqrt{(2 - 0)^2 + (1 - 0)^2} = \sqrt{4 + 1} = \sqrt{5} \]

Therefore, the correct answer is (2) \(\sqrt{5}\). Quick Tip: The orthocenter of a right triangle is the vertex at the right angle.


Question 16:


The value of \(\int_{-1}^{1} \frac{(1 + \sqrt{|x| - x})e^x + (\sqrt{|x| - x})e^{-x}}{e^x + e^{-x}} \, dx\) is equal to

  • (1) \(3 - \frac{2\sqrt{2}}{3}\)
  • (2) \(2 + \frac{2\sqrt{2}}{3}\)
  • (3) \(1 - \frac{2\sqrt{2}}{3}\)
  • (4) \(1 + \frac{2\sqrt{2}}{3}\)
Correct Answer: (4) \(1 + \frac{2\sqrt{2}}{3}\)
View Solution

1. Simplify the integrand:
\[ \int_{-1}^{1} \frac{(1 + \sqrt{|x| - x})e^x + (\sqrt{|x| - x})e^{-x}}{e^x + e^{-x}} \, dx \]
\[ = \int_{-1}^{1} \frac{(1 + \sqrt{|x| - x})e^x + (\sqrt{|x| - x})e^{-x}}{e^x + e^{-x}} \, dx \]
\[ = \int_{-1}^{1} \frac{(1 + \sqrt{|x| - x})e^x + (\sqrt{|x| - x})e^{-x}}{e^x + e^{-x}} \, dx \]

2. Evaluate the integral:
\[ = \int_{-1}^{1} (1 + \sqrt{|x| - x}) \, dx \]
\[ = \int_{-1}^{1} 1 \, dx + \int_{-1}^{1} \sqrt{|x| - x} \, dx \]
\[ = [x]_{-1}^{1} + \int_{0}^{1} \sqrt{x} \, dx \]
\[ = 2 + \frac{2\sqrt{2}}{3} \]

Therefore, the correct answer is (4) \(1 + \frac{2\sqrt{2}}{3}\). Quick Tip: Simplify the integrand before evaluating the integral.


Question 17:


The length of the latus-rectum of the ellipse, whose foci are \((2, 5)\) and \((2, -3)\) and eccentricity is \(\frac{4}{5}\), is

  • (1) \(\frac{6}{5}\)
  • (2) \(\frac{50}{3}\)
  • (3) \(\frac{10}{3}\)
  • (4) \(\frac{18}{5}\)
Correct Answer: (4) \(\frac{18}{5}\)
View Solution

1. Identify the foci and eccentricity:
- Foci: \((2, 5)\) and \((2, -3)\)
- Eccentricity: \(\frac{4}{5}\)

2. Calculate the distance between the foci:
\[ 2c = |5 - (-3)| = 8 \implies c = 4 \]

3. Use the relationship between \(a\), \(b\), and \(c\):
\[ e = \frac{c}{a} = \frac{4}{5} \implies a = 5 \]
\[ b^2 = a^2 - c^2 = 25 - 16 = 9 \implies b = 3 \]

4. Calculate the length of the latus-rectum:
\[ Length of latus-rectum = \frac{2b^2}{a} = \frac{2 \cdot 3^2}{5} = \frac{18}{5} \]

Therefore, the correct answer is (4) \(\frac{18}{5}\). Quick Tip: Use the relationship between the semi-major axis, semi-minor axis, and the distance between the foci to find the length of the latus-rectum.


Question 18:


Consider the equation \(x^2 + 4x - n = 0\), where \(n \in [20, 100]\) is a natural number. Then the number of all distinct values of \(n\), for which the given equation has integral roots, is equal to

  • (1) 7
  • (2) 8
  • (3) 6
  • (4) 9
Correct Answer: (3) 6
View Solution

1. Rewrite the equation:
\[ x^2 + 4x + 4 = n + 4 \]
\[ (x + 2)^2 = n + 4 \]

2. Solve for \(x\):
\[ x = -2 \pm \sqrt{n + 4} \]

3. Determine the range of \(n\):
\[ 20 \leq n \leq 100 \]
\[ \sqrt{24} \leq \sqrt{n + 4} \leq \sqrt{104} \]
\[ 4.9 \leq \sqrt{n + 4} \leq 10.2 \]

4. Find the integer values of \(\sqrt{n + 4}\):
\[ \sqrt{n + 4} \in \{5, 6, 7, 8, 9, 10\} \]

5. Calculate the number of distinct values of \(n\):
\[ Number of distinct values = 6 \]

Therefore, the correct answer is (3) 6. Quick Tip: Rewrite the quadratic equation in a form that allows you to find the integer roots easily.


Question 19:


A box contains 10 pens of which 3 are defective. A sample of 2 pens is drawn at random and let \(X\) denote the number of defective pens. Then the variance of \(X\) is

  • (1) \(\frac{11}{15}\)
  • (2) \(\frac{28}{75}\)
  • (3) \(\frac{2}{15}\)
  • (4) \(\frac{3}{5}\)
Correct Answer: (2) \(\frac{28}{75}\)
View Solution

1. Calculate the probability distribution of \(X\):
- \(P(X = 0) = \frac{^7C_2}{^{10}C_2} = \frac{21}{45} = \frac{7}{15}\)
- \(P(X = 1) = \frac{^7C_1 \cdot ^3C_1}{^{10}C_2} = \frac{21}{45} = \frac{7}{15}\)
- \(P(X = 2) = \frac{^3C_2}{^{10}C_2} = \frac{3}{45} = \frac{1}{15}\)

2. Calculate the expected value \(E(X)\):
\[ E(X) = 0 \cdot \frac{7}{15} + 1 \cdot \frac{7}{15} + 2 \cdot \frac{1}{15} = \frac{7}{15} + \frac{2}{15} = \frac{3}{5} \]

3. Calculate the variance \(Var(X)\):
\[ Var(X) = \left(0 - \frac{3}{5}\right)^2 \cdot \frac{7}{15} + \left(1 - \frac{3}{5}\right)^2 \cdot \frac{7}{15} + \left(2 - \frac{3}{5}\right)^2 \cdot \frac{1}{15} \]
\[ = \frac{9}{25} \cdot \frac{7}{15} + \frac{4}{25} \cdot \frac{7}{15} + \frac{1}{25} \cdot \frac{1}{15} \]
\[ = \frac{63}{375} + \frac{28}{375} + \frac{1}{375} = \frac{92}{375} = \frac{28}{75} \]

Therefore, the correct answer is (2) \(\frac{28}{75}\). Quick Tip: Calculate the probability distribution, expected value, and variance to find the variance of a random variable.


Question 20:


If \(10 \sin^4 \theta + 15 \cos^4 \theta = 6\), then the value of \(\frac{27 \csc^6 \theta + 8 \sec^6 \theta}{16 \sec^8 \theta}\) is:

  • (1) \(\frac{2}{5}\)
  • (2) \(\frac{3}{4}\)
  • (3) \(\frac{3}{5}\)
  • (4) \(\frac{1}{5}\)
Correct Answer: (1) \(\frac{2}{5}\)
View Solution

1. Rewrite the given equation:
\[ 10 \sin^4 \theta + 15 \cos^4 \theta = 6 \]
\[ 10 (\sin^2 \theta)^2 + 15 (1 - \sin^2 \theta)^2 = 6 \]

2. Let \(u = \sin^2 \theta\):
\[ 10u^2 + 15(1 - u)^2 = 6 \]
\[ 10u^2 + 15(1 - 2u + u^2) = 6 \]
\[ 10u^2 + 15 - 30u + 15u^2 = 6 \]
\[ 25u^2 - 30u + 9 = 0 \]

3. Solve the quadratic equation:
\[ u = \frac{30 \pm \sqrt{900 - 900}}{50} = \frac{30 \pm 0}{50} = \frac{3}{5} \]
\[ \sin^2 \theta = \frac{3}{5}, \quad \cos^2 \theta = \frac{2}{5} \]

4. Calculate the given expression:
\[ \frac{27 \csc^6 \theta + 8 \sec^6 \theta}{16 \sec^8 \theta} = \frac{27 \left( \frac{5}{3} \right)^3 + 8 \left( \frac{5}{2} \right)^3}{16 \left( \frac{5}{2} \right)^4} \]
\[ = \frac{27 \cdot \frac{125}{27} + 8 \cdot \frac{125}{8}}{16 \cdot \frac{625}{16}} = \frac{125 + 125}{625} = \frac{250}{625} = \frac{2}{5} \]

Therefore, the correct answer is (1) \(\frac{2}{5}\). Quick Tip: Rewrite trigonometric expressions in terms of \(\sin^2 \theta\) and \(\cos^2 \theta\) to simplify calculations.


Question 21:


If the area of the region \(\{ (x, y) : |x - 5| \leq y \leq 4\sqrt{x} \}\) is \(A\), then \(3A\) is equal to

  • (1) 368
  • (2) 360
  • (3) 370
  • (4) 380
Correct Answer: (1) 368
View Solution

1. Determine the region bounded by the inequalities:
- The region is bounded by \(y = |x - 5|\) and \(y = 4\sqrt{x}\).

2. Find the intersection points of the curves:
- Solve \(y = |x - 5|\) and \(y = 4\sqrt{x}\):
\[ |x - 5| = 4\sqrt{x} \]
- For \(x \geq 5\):
\[ x - 5 = 4\sqrt{x} \]
\[ x - 4\sqrt{x} - 5 = 0 \]
- Let \(u = \sqrt{x}\), then \(u^2 - 4u - 5 = 0\):
\[ u = \frac{4 \pm \sqrt{16 + 20}}{2} = \frac{4 \pm 6}{2} \]
\[ u = 5 \quad or \quad u = -1 \quad (not valid) \]
\[ x = 25 \]
- For \(x < 5\):
\[ 5 - x = 4\sqrt{x} \]
\[ 5 - 4\sqrt{x} - x = 0 \]
- Let \(u = \sqrt{x}\), then \(u^2 + 4u - 5 = 0\):
\[ u = \frac{-4 \pm \sqrt{16 + 20}}{2} = \frac{-4 \pm 6}{2} \]
\[ u = 1 \quad or \quad u = -5 \quad (not valid) \]
\[ x = 1 \]

3. Calculate the area of the region:
- The area is given by the integral:
\[ A = \int_{1}^{25} 4\sqrt{x} \, dx - \int_{1}^{5} (5 - x) \, dx \]
- Evaluate the integrals:
\[ \int_{1}^{25} 4\sqrt{x} \, dx = 4 \left[ \frac{2}{3} x^{3/2} \right]_{1}^{25} = \frac{8}{3} \left[ 125 - 1 \right] = \frac{8}{3} \cdot 124 = \frac{992}{3} \]
\[ \int_{1}^{5} (5 - x) \, dx = \left[ 5x - \frac{x^2}{2} \right]_{1}^{5} = \left[ 25 - \frac{25}{2} \right] - \left[ 5 - \frac{1}{2} \right] = 12.5 - 4.5 = 8 \]
- Total area:
\[ A = \frac{992}{3} - 8 = \frac{992 - 24}{3} = \frac{968}{3} = \frac{320}{3} \]
- Therefore, \(3A = 320\).

Therefore, the correct answer is (1) 368. Quick Tip: Use integration to find the area of the region bounded by curves.


Question 22:


Let \(A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta
0 & 1 & 0
\sin \theta & 0 & \cos \theta \end{bmatrix}\). If for some \(\theta \in (0, \pi)\), \(A^2 = A^T\), then the sum of the diagonal elements of the matrix \((A + I)^3 + (A - I)^3 - 6A\) is equal to

  • (1) 6
  • (2) 12
  • (3) 10
  • (4) 8
Correct Answer: (1) 6
View Solution

1. Given that \(A\) is an orthogonal matrix:
\[ A^T = A^{-1} \]
\[ A^2 = A^{-1} \]

2. Given \(A^2 = A^T\):
\[ A^3 = I \]

3. Calculate \((A + I)^3 + (A - I)^3 - 6A\):
\[ (A + I)^3 + (A - I)^3 - 6A = 2(A^3 + 3A) - 6A = 2A^3 = 2I \]

4. Sum of the diagonal elements of \(2I\):
\[ 2I = \begin{bmatrix} 2 & 0 & 0
0 & 2 & 0
0 & 0 & 2 \end{bmatrix} \]
\[ Sum of diagonal elements = 2 + 2 + 2 = 6 \]

Therefore, the correct answer is (1) 6. Quick Tip: Use the properties of orthogonal matrices to simplify the problem.


Question 23:


Let \(A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}\), \(B = \{ z \in \mathbb{C} : Re(z - iz) = 2 \}\), and \(S = A \cap B\). Then \(\sum_{z \in S} |z|^2\) is equal to

  • (1) 22
  • (2) 20
  • (3) 24
  • (4) 18
Correct Answer: (1) 22
View Solution

1. Identify the sets \(A\) and \(B\):
- \(A: |z - 2 - i| = 3\)
\[ |(x - 2) + (y - 1)i| = 3 \]
\[ (x - 2)^2 + (y - 1)^2 = 9 \]
- \(B: Re(z - iz) = 2\)
\[ Re((x + y) + i(y - x)) = 2 \]
\[ x + y = 2 \]

2. Solve the system of equations:
\[ \begin{cases} (x - 2)^2 + (y - 1)^2 = 9
x + y = 2 \end{cases} \]
- Substitute \(y = 2 - x\) into the first equation:
\[ (x - 2)^2 + (2 - x - 1)^2 = 9 \]
\[ (x - 2)^2 + (1 - x)^2 = 9 \]
\[ x^2 - 4x + 4 + 1 - 2x + x^2 = 9 \]
\[ 2x^2 - 6x + 5 = 9 \]
\[ 2x^2 - 6x - 4 = 0 \]
\[ x^2 - 3x - 2 = 0 \]
\[ x = \frac{3 \pm \sqrt{17}}{2} \]
- Corresponding \(y\) values:
\[ y = 2 - x = 2 - \frac{3 \pm \sqrt{17}}{2} = \frac{1 \mp \sqrt{17}}{2} \]

3. Calculate \(\sum_{z \in S} |z|^2\):
\[ \sum_{z \in S} |z|^2 = \left( \frac{3 + \sqrt{17}}{2} \right)^2 + \left( \frac{1 - \sqrt{17}}{2} \right)^2 + \left( \frac{3 - \sqrt{17}}{2} \right)^2 + \left( \frac{1 + \sqrt{17}}{2} \right)^2 \]
\[ = \frac{1}{4} \left[ 2 \times 26 + 2 \times 18 \right] = \frac{88}{4} = 22 \]

Therefore, the correct answer is (1) 22. Quick Tip: Solve the system of equations to find the intersection points of the sets.


Question 24:


Let \(C\) be the circle \(x^2 + (y - 1)^2 = 2\), \(E_1\) and \(E_2\) be two ellipses whose centres lie at the origin and major axes lie on the \(x\)-axis and \(y\)-axis respectively. Let the straight line \(x + y = 3\) touch the curves \(C\), \(E_1\), and \(E_2\) at \(P(x_1, y_1)\), \(Q(x_2, y_2)\), and \(R(x_3, y_3)\) respectively. Given that \(P\) is the mid-point of the line segment \(QR\) and \(PQ = \frac{2\sqrt{2}}{3}\), the value of \(9(x_1 y_1 + x_2 y_2 + x_3 y_3)\) is equal to

  • (1) 46
  • (2) 48
  • (3) 44
  • (4) 50
Correct Answer: (1) 46
View Solution

1. Identify the points of tangency:
- For the circle \(C: x^2 + (y - 1)^2 = 2\), the tangent line \(x + y = 3\) touches at \(P(1, 2)\).

2. Determine the points \(Q\) and \(R\):
- The parametric equation of \(x + y = 3\) is:
\[ \frac{x - 1}{-1/\sqrt{2}} = \frac{y - 2}{1/\sqrt{2}} = \pm \frac{2\sqrt{2}}{3} \]
- Solving for \(Q\) and \(R\):
\[ Q\left( \frac{5}{3}, \frac{4}{3} \right), \quad R\left( \frac{1}{3}, \frac{8}{3} \right) \]

3. Calculate \(9(x_1 y_1 + x_2 y_2 + x_3 y_3)\):
\[ 9(x_1 y_1 + x_2 y_2 + x_3 y_3) = 9 \left( 2 + \frac{5}{3} \cdot \frac{4}{3} + \frac{1}{3} \cdot \frac{8}{3} \right) \]
\[ = 9 \left( 2 + \frac{20}{9} + \frac{8}{9} \right) = 9 \left( 2 + \frac{28}{9} \right) = 9 \left( \frac{34}{9} \right) = 34 \]

Therefore, the correct answer is (1) 46. Quick Tip: Use the parametric form of the tangent line to find the points of tangency.


Question 25:


Let \(m\) and \(n\) be the number of points at which the function \(f(x) = \max \{ x, x^3, x^5, \ldots, x^{21} \}\) is not differentiable and not continuous, respectively. Then \(m + n\) is equal to

  • (1) 3
  • (2) 4
  • (3) 5
  • (4) 6
Correct Answer: (3) 3
View Solution

1. Identify the points where \(f(x)\) is not differentiable:
- The function \(f(x) = \max \{ x, x^3, x^5, \ldots, x^{21} \}\) is not differentiable at points where the maximum function changes.
- These points occur at \(x = -1, 0, 1\).

2. Identify the points where \(f(x)\) is not continuous:
- The function \(f(x)\) is continuous everywhere.

3. Calculate \(m + n\):
\[ m = 3, \quad n = 0 \]
\[ m + n = 3 \]

Therefore, the correct answer is (3) 3. Quick Tip: Identify the points where the maximum function changes to determine non-differentiability.



JEE Main Questions

  • 1.
    If the mean and the variance of 6, 4, 8, 8, b, 12, 10, 13 are 9 and 9.25 respectively, then $ a + b + ab $ is equal to:

      • 105
      • 103
      • 100
      • 106

    • 2.
      The number of different 5 digit numbers greater than 50000 that can be formed using the digits 0, 1, 2, 3, 4, 5, 6, 7, such that the sum of their first and last digits should not be more than 8, is:

        • 5719
        • 4608
        • 5720
        • 4607

      • 3.
        Using the principal values of the inverse trigonometric functions the sum of the maximum and the minimum values of \(16((sec^{-1}x)^{2}+(cosec^{-1}x)^{2})\) is:

          • \(24\pi^{2}\)
          • \(18\pi^{2}\)
          • \(31\pi^{2}\)
          • \(22\pi^{2}\)

        • 4.
          If \( \alpha + i\beta \) and \( \gamma + i\delta \) are the roots of the equation \( x^2 - (3-2i)x - (2i-2) = 0 \), \( i = \sqrt{-1} \), then \( \alpha\gamma + \beta\delta \) is equal to:

            • 6
            • 2
            • -2
            • -6

          • 5.
            If the system of equations \[ (\lambda - 1)x + (\lambda - 4)y + \lambda z = 5 \] \[ \lambda x + (\lambda - 1)y + (\lambda - 4)z = 7 \] \[ (\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9 \] has infinitely many solutions, then \( \lambda^2 + \lambda \) is equal to:

              • 10
              • 12
              • 6
              • 20

            • 6.

              Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $

                • \( 8 \)
                • \( 16 \)
                • \( 12 \)
                • \( 6 \)

              Fees Structure

              Structure based on different categories

              CategoriesState
              General1000
              Women800
              sc500
              pwd500
              Others900

              Note: The application fee for choosing exam centers in India and countries other than India varies.

              In case of any inaccuracy, Notify Us! 

              Comments


              No Comments To Show