A wheel starts rotating at 10 rad/sec and attains the angular velocity of 100 rad/sec in 15 seconds. What is the angular acceleration in rad/sec2? A. 10 B. 110/15 C. 100/15 D. 6

Collegedunia Team logo

Collegedunia Team Content Curator

Content Curator

The Correct answer is (D)

The equation of rotational motion for constant angular acceleration is given by

ωf = ωi  + αt

⇒ α = \(\frac{\omega_f - \omega_i}{t}\)

Where, 

  • ωf = final angular velocity
  • ωi = initial angular velocity
  • α = angular acceleration
  • t = time taken to reach final angular velocity from initial angular velocity.

Given, 

Initial angular velocity, ωi = 10 rad/s

final angular velocity, ωf = 100 rad/s

Time taken, t = 15 sec

Using the equation of rotational motion, angular acceleration (α) of the wheel, is given by 

α = \(\frac{100-10}{15} = \frac{90}{15}\)

⇒ α = 6 rad/sec2


Also Read:

CBSE CLASS XII Related Questions

  • 1.

    Assertion (A): The deflection in a galvanometer is directly proportional to the current passing through it. 

    Reason (R): The coil of a galvanometer is suspended in a uniform radial magnetic field.

      • Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A)
      • Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of Assertion (A).
      • Assertion (A) is true, but Reason (R) is false.
      • Assertion (A) is false and Reason (R) is also false.

    • 2.
      The electric field (\( \vec{E} \)) and electric potential (\( V \)) at a point inside a charged hollow metallic sphere are respectively:

        • \( E = 0, \quad V = 0 \)
        • \( E = 0, \quad V = V_0 \text{ (a constant)} \)
        • \( E \ne 0, \quad V \ne 0 \)
        • \( E = E_0 \text{ (a constant)}, \quad V = 0 \)

      • 3.
        Three batteries E1, E2, and E3 of emfs and internal resistances (4 V, 2 \(\Omega\)), (2 V, 4 \(\Omega\)) and (6 V, 2 \(\Omega\)) respectively are connected as shown in the figure. Find the values of the currents passing through batteries E1, E2, and E3.
        Three batteries E1, E2, and E3 of emfs and internal resistances


          • 4.
            A current carrying circular loop of area A produces a magnetic field \( B \) at its centre. Show that the magnetic moment of the loop is \( \frac{2BA}{\mu_0} \sqrt{\frac{A}{\pi}} \).


              • 5.
                Two infinitely long conductors kept along XX' and YY' axes are carrying current \( I_1 \) and \( I_2 \) along -X axis and -Y axis respectively. Find the magnitude and direction of the net magnetic field produced at point P(X, Y).


                  • 6.

                    Two slits 0.1 mm apart are arranged 1.20 m from a screen. Light of wavelength 600 nm from a distant source is incident on the slits. How far apart will adjacent bright interference fringes be on the screen? 

                      CBSE CLASS XII Previous Year Papers

                      Comments


                      No Comments To Show