Derive Newton's first law from second law?

Collegedunia Team logo

Collegedunia Team

Content Curator

According to Newton’s second law of motion, the rate of change of momentum of a body is directly proportional to the applied force and it takes place in the direction in which the force acts.

Consider a body of mass m moving with velocity v, then the linear momentum of the body is given by

p = mv

Now from, Newton’s second law,

F ∝ \(\frac{dp}{dt}\)

⇒ F = k \(\frac{dp}{dt}\)

Where, k is constant of proportionality.

As, p = mv

⇒ F = k \(\frac{d(mv)}{dt}\) = km \(\frac{dv}{dt}\)

But, \(\frac{dv}{dt}\) = a, acceleration of the body

The value of the constant of proportionality k is considered as 1 for simplicity.

By taking k = 1, we get

F = ma

According to Newton’s first law of motion, everybody continues in its state of rest or uniform motion in a particular direction until and unless an external force is applied to change that state.

Now, if net force, F = 0, then by Newton’s second law acceleration, a = 0.

This shows that, if there is no force acting on the body, its acceleration is zero i.e. the body will be in its state of rest or uniform motion. Hence, Newton’s first law is derived from the second law.


Also Read:

CBSE CLASS XII Related Questions

1.
A closely wound solenoid of \(2000 \) turns and area of cross-section \(1.6 × 10^{-4}\  m^2\), carrying a current of \(4.0 \ A\), is suspended through its centre allowing it to turn in a horizontal plane. 
(a) What is the magnetic moment associated with the solenoid?
(b) What is the force and torque on the solenoid if a uniform horizontal magnetic field of \(7.5 × 10^{-2}\  T\) is set up at an angle of \(30º\) with the axis of the solenoid?

      2.
      A circular disc is rotating about its own axis at uniform angular velocity \(\omega.\) The disc is subjected to uniform angular retardation by which its angular velocity is decreased to \(\frac {\omega}{2}\) during 120 rotations. The number of rotations further made by it before coming to rest is

        • 120
        • 60
        • 40
        • 20

        3.

        In a parallel plate capacitor with air between the plates, each plate has an area of 6 × 10–3 m2 and the distance between the plates is 3 mm. Calculate the capacitance of the capacitor. If this capacitor is connected to a 100 V supply, what is the charge on each plate of the capacitor?

            4.

            Three capacitors each of capacitance 9 pF are connected in series. 

            (a) What is the total capacitance of the combination? 

            (b) What is the potential difference across each capacitor if the combination is connected to a 120 V supply?

                5.
                Figure shows tracks of three charged particles in a uniform electrostatic field. Give the signs of the three charges. Which particle has the highest charge to mass ratio?

                    6.

                    A tank is filled with water to a height of 12.5cm. The apparent depth of a needle lying at the bottom of the tank is measured by a microscope to be 9.4cm. What is the refractive index of water? If water is replaced by a liquid of refractive index 1.63 up to the same height, by what distance would the microscope have to be moved to focus on the needle again?

                        CBSE CLASS XII Previous Year Papers

                        Comments



                        No Comments To Show