Derive Newton's first law from second law?

Collegedunia Team logo

Collegedunia Team Content Curator

Content Curator

According to Newton’s second law of motion, the rate of change of momentum of a body is directly proportional to the applied force and it takes place in the direction in which the force acts.

Consider a body of mass m moving with velocity v, then the linear momentum of the body is given by

p = mv

Now from, Newton’s second law,

F ∝ \(\frac{dp}{dt}\)

⇒ F = k \(\frac{dp}{dt}\)

Where, k is constant of proportionality.

As, p = mv

⇒ F = k \(\frac{d(mv)}{dt}\) = km \(\frac{dv}{dt}\)

But, \(\frac{dv}{dt}\) = a, acceleration of the body

The value of the constant of proportionality k is considered as 1 for simplicity.

By taking k = 1, we get

F = ma

According to Newton’s first law of motion, everybody continues in its state of rest or uniform motion in a particular direction until and unless an external force is applied to change that state.

Now, if net force, F = 0, then by Newton’s second law acceleration, a = 0.

This shows that, if there is no force acting on the body, its acceleration is zero i.e. the body will be in its state of rest or uniform motion. Hence, Newton’s first law is derived from the second law.


Also Read:

CBSE CLASS XII Related Questions

  • 1.
    An electric dipole consists of charges \(\pm 4 \mu C\) separated by a distance of \(6\,cm\). Calculate the electric field at a point on the axial line at a distance \(20\,cm\) from its center.


      • 2.
        Two cells of emf 10 V each, two resistors of 20 \( \Omega \) and 10 \( \Omega \), and a bulb B of 10 \( \Omega \) resistance are connected together as shown in the figure. Find the current that flows through the bulb.
        Two cells of emf 10 V each, two resistors


          • 3.
            A rectangular glass slab ABCD (refractive index 1.5) is surrounded by a transparent liquid (refractive index 1.25) as shown in the figure. A ray of light is incident on face AB at an angle \(i\) such that it is refracted out grazing the face AD. Find the value of angle \(i\).
            A rectangular glass slab ABCD (refractive index 1.5)


              • 4.
                Write vector form of Biot–Savart law.


                  • 5.
                    A charge \( -6 \mu C \) is placed at the center B of a semicircle of radius 5 cm, as shown in the figure. An equal and opposite charge is placed at point D at a distance of 10 cm from B. A charge \( +5 \mu C \) is moved from point ‘C’ to point ‘A’ along the circumference. Calculate the work done on the charge.
                    work done on the charge


                      • 6.
                        Two wires of the same material and the same radius have their lengths in the ratio 2:3. They are connected in parallel to a battery which supplies a current of 15 A. Find the current through the wires.

                          CBSE CLASS XII Previous Year Papers

                          Comments


                          No Comments To Show