Derive Newton's first law from second law?

Collegedunia Team logo

Collegedunia Team Content Curator

Content Curator

According to Newton’s second law of motion, the rate of change of momentum of a body is directly proportional to the applied force and it takes place in the direction in which the force acts.

Consider a body of mass m moving with velocity v, then the linear momentum of the body is given by

p = mv

Now from, Newton’s second law,

F ∝ \(\frac{dp}{dt}\)

⇒ F = k \(\frac{dp}{dt}\)

Where, k is constant of proportionality.

As, p = mv

⇒ F = k \(\frac{d(mv)}{dt}\) = km \(\frac{dv}{dt}\)

But, \(\frac{dv}{dt}\) = a, acceleration of the body

The value of the constant of proportionality k is considered as 1 for simplicity.

By taking k = 1, we get

F = ma

According to Newton’s first law of motion, everybody continues in its state of rest or uniform motion in a particular direction until and unless an external force is applied to change that state.

Now, if net force, F = 0, then by Newton’s second law acceleration, a = 0.

This shows that, if there is no force acting on the body, its acceleration is zero i.e. the body will be in its state of rest or uniform motion. Hence, Newton’s first law is derived from the second law.


Also Read:

CBSE CLASS XII Related Questions

  • 1.
    A rectangular glass slab ABCD (refractive index 1.5) is surrounded by a transparent liquid (refractive index 1.25) as shown in the figure. A ray of light is incident on face AB at an angle \(i\) such that it is refracted out grazing the face AD. Find the value of angle \(i\).
    A rectangular glass slab ABCD (refractive index 1.5)


      • 2.
        A system of two conductors is placed in air and they have net charge of \( +80 \, \mu C \) and \( -80 \, \mu C \) which causes a potential difference of 16 V between them.
        (1) Find the capacitance of the system.
        (2) If the air between the capacitor is replaced by a dielectric medium of dielectric constant 3, what will be the potential difference between the two conductors?
        (3) If the charges on two conductors are changed to +160µC and −160µC, will the capacitance of the system change? Give reason for your answer.


          • 3.
            A vertically held bar magnet is dropped along the axis of a copper ring having a cut as shown in the diagram. The acceleration of the falling magnet is:
            vertically held bar magnet is dropped along the axis of a copper ring

              • zero
              • less than \( g \)
              • \( g \)
              • greater than \( g \)

            • 4.
              A parallel plate capacitor has plate area \( A \) and plate separation \( d \). Half of the space between the plates is filled with a material of dielectric constant \( K \) in two ways as shown in the figure. Find the values of the capacitance of the capacitors in the two cases. parallel plate capacitor


                • 5.
                  Two point charges \( q_1 = 16 \, \mu C \) and \( q_2 = 1 \, \mu C \) are placed at points \( \vec{r}_1 = (3 \, \text{m}) \hat{i}\) and \( \vec{r}_2 = (4 \, \text{m}) \hat{j} \). Find the net electric field \( \vec{E} \) at point \( \vec{r} = (3 \, \text{m}) \hat{i} + (4 \, \text{m}) \hat{j} \).


                    • 6.
                      (a) Consider the so-called ‘D-T reaction’ (Deuterium-Tritium reaction).
                      In a thermonuclear fusion reactor, the following nuclear reaction occurs: \[ \ ^{2}_1 \text{H} + \ ^{3}_1 \text{H} \longrightarrow \ ^{4}_2 \text{He} + \ ^{1}_0 \text{n} + Q \] Find the amount of energy released in the reaction.
                      % Given data Given:
                      \( m\left(^{2}_1 \text{H}\right) = 2.014102 \, \text{u} \)
                      \( m\left(^{3}_1 \text{H}\right) = 3.016049 \, \text{u} \)
                      \( m\left(^{4}_2 \text{He}\right) = 4.002603 \, \text{u} \)
                      \( m\left(^{1}_0 \text{n}\right) = 1.008665 \, \text{u} \)
                      \( 1 \, \text{u} = 931 \, \text{MeV}/c^2 \)

                        CBSE CLASS XII Previous Year Papers

                        Comments


                        No Comments To Show