Banking of Roads: Formula, Derivation, Angle of Banking & Examples

Arpita Srivastava logo

Arpita Srivastava

Content Writer

Banking of Roads is defined as the process of raising the edges of a curved road above the inner edge so that there is required centripetal force for the vehicles to take a safe turn

  • This is usually done to avoid skidding off of a vehicle. 
  • The edges are inclined in a horizontal manner by lifting the outer edge of the road. 
  • Banking angle is the angle at which the road is inclined.
  • Banking of Road can be calculated with the help of friction and without friction.
  • The maximum speed of the moving vehicle is kept under control.
  • The advantage of banking of roads is that tumbles and overturns are avoided.

Key Terms: Banking of Roads, Banking Angle, Frictional Force, Centripetal Force, Skidding, Radius of Curvature, Friction, Circular Motion, Force, Speed


What Is Banking of Roads? 

[Click Here for Sample Questions]

Banking of roads is the process of lifting the outer edge of the road in such a way that it is higher than that of its inner edge. The surface of the road seems like some inclined plane.

  • The angle at which the road is inclined is known as the banking angle
  • When the vehicle moves through a curved road, the horizontal component force is acting upon the vehicle.
  • The component provides the necessary centripetal force, which further avoids skidding of the vehicle.
  • The maximum allowed speed on an inclined or banked turn depends on the mass of the vehicle.
  • As per the banking angle, it depends upon the coefficient of friction and its radius of curvature.
  • The power of friction varies from road to road, as roadways are sometimes moist and greasy due to rain and other factors.

Read More:


What Is Centripetal force? 

[Click Here for Previous Year Questions]

Centripetal force pushes or pulls an object in an angular or circular motion to the direction of the centre of the circle. It will make the body move along the curved path.

  • It depends upon the angle of motion and radius of the circular path.
  • The direction of force is orthogonal to the motion of the body.
  • It is also known as angular velocity.
  • In the case of particle accelerators, angular velocity is equal to the speed of light in a vacuum.
  • The centripetal force is obtained from an inertial frame of reference.
  • Spinning a ball on a string is another example of centripetal force.

The formula for Centripetal force is given by:

\(F_r = \frac{mv^2}{r}\)

 Read More:

Derivation of Banking of Road  

[Click Here for Sample Questions]

Consider a car of mass ‘m’ and moving with a speed ‘v’ across a circular road of radius ‘r’. Let ‘\(\theta\)’ be the banking angle and f be the frictional force acting between the road and the car’s tyres as shown in the figure.

Here, 

  • Total upwards force = Total downward force

Ncos\(\theta\) = mg + fsin\(\theta\)

Where, Ncos\(\theta\) → Normal reaction along the vertical axis

fsin\(\theta\) → Frictional force along the vertical axis

mg → Weight of the vehicle acting downwards

Thus,

mg = Ncos\(\theta\) - fsin\(\theta\) ……(i)

  • By replacing mg, we get

\(\frac{mv^2}{r}\)= Nsin\(\theta\) + fcos\(\theta\) ……(ii)

Where, Nsin\(\theta\) → Normal reaction along the horizontal axis

fcos\(\theta\) → Frictional force along the horizontal axis

Dividing equation (ii) by (i), we get,

   where v²rg = Nsin\(\theta\) + fcos\(\theta\)Ncos\(\theta\) - fsin\(\theta\)

  • We know that, Frictional Force \(f = \mu_s N \frac{v^2}{rg}\)
  • On substitution and further simplification, we get

\(v = \sqrt{\frac{rg tan\theta + \mu_s}{1- \mu_s tan \theta}}\)...(iii)

\(v_{max} = tan^{-1} \frac{v^2}{rg}\)

When there is no friction, the vertical component of the road acts as a normal force due to which the weight of the vehicle is balanced, and the horizontal component gives in to the centripetal force in the direction of the centre of the curvature of the road. The inclination occurs at the horizontal and longitudinal axis. 

Read More:


Banking of Road Formula

[Click Here for Previous Year Questions]

Banking of the road is calculated in the presence of friction and without friction. The formula required in case of friction and without friction is as follows:

  • Banking Road Formula Without Friction: In this case, the vertical component of force balances the weight of the vehicle. The horizontal force is responsible for producing the required centripetal forces.

The required formula for banking of road is as follows:  v= grtan

where, r =centre of curvature and g = acceleration due to gravity

  • Banking Road Formula With Friction: In this case, friction force will apply vertically downward and horizontally toward the centre.

The required formula for banking of road is as follows: F= μ N

where Velocity is given by: Vmax= grtan +1-tan


Zero banking angle 

[Click Here for Sample Questions]

If the banking angle is zero, it means the surface of the road is flat. The normal force does not contribute to the centripetal force any more as it becomes vertical now.

  • It is responsible for balancing the weight of the vehicle.
  • Friction force acts only on a rough finish surface and thus can provide a centripetal force.
  • Therefore, the vertical component of the forces creates a balance. 

When the banking angle is 0, substitute in eq(iii) of derivation of banking of road, we will get

\(v = \sqrt {\mu rg}\)

Read More: Sliding Friction


Importance of Banking of Roads 

[Click Here for Previous Year Questions]

Banking of Roads is mainly done for the following reasons.

  • Banking of road provides the vehicles with the required centripetal force to take a safe turn.
  • The concept also prevents vehicles from skidding.
  • It also prevents vehicles from overturning or toppling.

Things To Remember

  • Banking of road provides the centripetal force that is required for a vehicle to take a safe turn on a curved road.
  • It also avoids skidding and prevents overturning or toppling of the vehicle. 
  • The angle at which the banked road is inclined is called the Banking angle.
  • Banking of Road is also present on railway tracks and on the airplane runway so that the trains can take a safer turn and the aircraft wings can get in a proper horizontal position. 
  • Banking is impossible on a perfectly flat, smooth road because no turning is involved. 
  • The race tracks have large angles to allow great speeds. 

Also Read:


Previous Year Questions

  1. The propulsion of a rocket is based on the principle of conservation of? [KEAM 2016]
  2. Two spheres P and Q, each of mass 200g are attached to a string of length one metre…? [AP EAPCET 2018]
  3. A 10kg body hangs at rest from a rope wrapped around a cylinder of 0.2 m in diameter…? [JIPMER 1999]
  4. An athlete throws a discus from rest to a final angular velocity of 15 rads−1 in 0.270s before…? [BHU UET 2018]
  5. In non uniform circular motion, the ratio of tangential to radial acceleration is…? [MHT CET 2018]
  6. A body is projected with a speed 'u’ at an angle ′θ′ with the horizontal. The radius of curvature…? [AP EAPCET 2019]
  7. A body is travelling in a circle at a constant speed. It…? [BITSAT 2010]
  8. Angular momentum is conserved…? [BITSAT 2006]
  9. A particle moves along a circle of radius r with constant tangential acceleration…? [MHT CET 2016]
  10. A boat crosses a river from port A to port B, which are just on the opposite side. The speed of the water…? [JEE 2019]
  11. A 5000 kg rocket is set for vertical firing. The exhaust speed is 800 m/s. To give an initial upward…? [NEET 2017]
  12. A moving cycle can be easily balanced. This can be explain by the law of conservation of? [JIPMER 1996]
  13. A planet is revolving around the Sun as shown in the figure. The radius vectors joining the Sun... [AP EAPCET]
  14. A ceiling fan rotates about its own axis with some angular velocity. When the fan is switched off… [MHT CET 2018]
  15. A flywheel at rest is to reach an angular velocity of 24 rad/s in 8 second with constant...[MHT CET 2017]
  16. A disc is performing pure rolling on a smooth stationary surface with constant angular velocity…? [BITSAT 2013]
  17. Figure shows the total acceleration a=32m/s2 of a moving particle moving clockwise in a circle…? [UPSEE 2010]
  18. A thin circular ring of mass M and radius r is rotating about its axis with constant angular velocity ω…? [NEET 2010]
  19. The angle between the linear momentum and angular momentum of a particle in circular motion is…? [KEAM 2013]
  20. The kinetic energy of a body rotating at 300 revolutions per minute is 62.8 J. Its angular momentum…? [AP EAPCET]

Sample Questions

Ques. A curve has a radius of 50 meters and a banking angle of 15º. What is the ideal, or critical, speed (the speed for which no friction is required between the car's tires and the surface) for a car on this curve? (3 marks)

Ans. Here, radius of curve, r = 50 m

banking angle, θ = 15º

free-fall acceleration, g = 9.8 m/s2

We have to find out the ideal speed v (the speed for which no friction is required between the car's tires and the surface)

From the free-body diagram for the car:-

Fnet = Fcentripital

mg tanθ = mv2/r

v2 = rg tanθ

v = √rg tanθ

= √(50 m) (9.8 m/s2) (tan 15º) = 11 m/s

If the car has a speed of about 11 m/s, it can negotiate the curve without any friction.

Ques. What happens when the banking angle is zero? (1 mark)

Ans. When the banking angle is zero degree, the road tends to be flat.

Ques. A 1200 kg automobile rounds a level curve of radius 200 m, on an unbanked road with a velocity of 72 km/hr. What is the minimum coefficient of friction between the tyres and road in order that the automobile may not skid. (g = 10 m/s2)  (3 marks)

Ans. In an unbanked road, the centripetal force is provided by the frictional force.

So, ffriction = mv2/r But flimiting friction > ffriction

 or, μmg = ffriction or μmg = mv2/r

So, μmin = v2/gr = (20×20)/(10×200) = 0.2.

The bank angle is the angle at which the vehicle is inclined about its longitudinal axis with respect to the plane of its curved path.

If the force of friction is not strong enough, the vehicle will skid.

Even if there is very little force of friction the vehicle can still go round the curve with no tendency to skid.

Roads are banked because of the inertia of vehicles driving on the road. 

Ques. What do you mean by banking of roads?  (2 marks)

Ans. The process of raising the outer edge of a road over its inner edge through a certain angle is known as banking of road. The angle at which the road is banked is called the banking angle. 

Ques. A turn of radius 100 m is being designed for a speed of 25 m/s. At what angle should the turn be banked? (3 marks)

Ans. Here, radius of turn, r = 100 m

speed of the car, v = 25 m/s

free-fall acceleration, g = 9.8 m/s2

We have to find out the bank angle, θ.

From the free body diagram of the car,

Fnet = Fcentripetal

mg tanθ = mv2/r

tanθ = \(\frac{v^2}{rg}\)

θ = tan-1(v2/rg)

 = tan-1 [(25 m/s)2/ (100 m) (9.8 m/s2)] = 33º

So, the banking angle should be about 33º.

Ques. Consider a circular road of radius 20 meter banked at an angle of 15 degree. With what speed a car has to move on the turn so that it will have a safe turn?  (2 marks)

Ans.

The safe speed for the car on this road is 7.1 m per second

The safe speed for the car on this road is 7.1 m per second

Ques. Is Banking of roads possible on a smooth road? (1 mark)

Ans. No. Banking of roads is not possible on a smooth road as it does not have friction.

Ques. The radius of a circular road course track is 500 m and its angle of banking is 10°. Take the coefficient of friction between the road and tyre as 0.25. Calculate the speed, upto which slipping can be avoided. (3 marks)

Ans. The following information is given: 

Radius = 500 m

Angle of banking = 10o

Coefficient of friction = 0.25

From the formula derived above, 

\(v =\sqrt{ \frac{rg(tan\theta +\mu_s)}{1-\mu_stan\theta}}\)

\(\sqrt{\frac{500\times9.8\times(tan10^o +0.25)}{(1-0.25tan10^o)}}\)

tan10o = 0.1763

Computing the above value, 

v = 46.74 m/s

Ques. Civil engineers generally bank curves on roads in such a manner that a car going around the curve at the recommended speed does not have to rely on friction between its tires and the road surface in order to round the curve. Suppose that the radius of curvature of a given curve is r=60m , and that the recommended speed is v = 40kmph. At what angle should the curve be banked? (2 marks)
 Civil engineers generally bank curves on roads in such a manner that a car going around the curve at the recommended speed does not have to rely on friction between its tires and the road surface in order to round the curve.

Ans. We know that,

\(\theta = \tan^-1 (\frac{v^2}{rg})\)

Hence,

\(\theta = \tan^{-1} (\frac{(\frac{40*1000}{3600})^2}{60*9.81}) =11.8^o\)

Ques. Why is it necessary to bank the roads? (2 marks)

Ans. When a bike or any vehicle moves in a banking road, necessary centripetal force is supplied by the frictional force between wheels and the surface of the road, this way the vehicle safely moves in the curve path, it doesn't skid. So, in a simple way, Due to the lack of centripetal force, vehicles tend to skid. To safely drive on a circular road, banking of the road is necessary .

Ques. How is banking of roads used in trains and aircrafts? (2 marks)

Ans. Banking is also present on the railway tracks and on the aircrafts so that the trains can take a safer turn while the aircraft wings get in a proper horizontal position.

Ques. Two turns of a smooth road are banked with the same angle. What is the ratio of maximum velocities for the two turns if the ratio of radii of curvature is 1:3? (3 marks)

Ans. The expression of maximum velocity v,

  • v=√grtanθ 

Here, g is the gravitational acceleration, ris the radius of curvature, and the banking angle. Since the two turns have the same banking angle, the ratio of maximum velocities

  • v1 / v2 = √r1 / r2

where r1 and r2 are the radii of curvature with their ratio being

  • r1 / r2 = 1/3

Hence the ratio of velocities is,

  • v1 / v2 = √1/3

Ques. A vehicle can have a maximum velocity of 72 km/hr on a smooth turn of radius 100 m. What is the banking angle? (3 marks)

Ans.  Maximum velocity, Vm = 54 km/hr = 15 m/s

The radius of banking r = 100 m

Gravitational acceleration g = 10 m/s2

From the expression of maximum velocity: Vm = √grtanθ 

  • tanθ = v2m/gr
  • tanθ = 15 x 15 / 10 x 1000
  • tanθ = 0.0225

θ = 1.28893756 degree which is our required banking angle

Ques. A circular race track of radius 100 m is banked at an angle of 45°. What is the (3 marks)
(a) Optimum speed of a race car to avoid wear and tear on its tyres?
(b) Maximum permissible speed to avoid slipping if the coefficient of friction is 0.2?

Ans. The maximum permissible speed on a banked road is given by

\(v_{max} = (Rg \frac{\mu _s + tan \theta}{1- \mu_s tan \theta})^{1/2}\)

Where

  • R is the radius of the circular track
  • g is the acceleration due to gravity
  • θ is the angle of the banked
  • µs is the coefficient of friction
  1. To avoid wear and tear and get optimum speed friction force should be zero i.e. µs = 0.

Therefore the above equation becomes

v0 = (Rg tanθ)1/2

On substituting the value, we get

v0 = (100 x 9.8 x tan 45)1/2 = 31.3 m/s

  1. Maximum permissible speed to avoid slipping is given by

\(v_{max} = (Rg \frac{\mu _s + tan \theta}{1- \mu_s tan \theta})^{1/2}\)

On substituting the values, we get

vmax = (100 x 9.8 x \(\frac{0.2 + tan45}{1- 0.2 \times tan45}\))1/2

vmax = 38.34 m/s

Ques. A cyclist speeding at 4.5 km/h on a level road takes a sharp circular turn of radius 3 m without reducing the speed. The coefficient of static friction between the road and the tyres is 0.1. (3 marks)
(A) Will he slip while taking the turn?
(B) Will he slip if his speed is 9 km/h?

Ans. Friction force provides the necessary centripetal force. He will slip if the turn is too sharp i.e. if the radius of the turn is too small or if his speed is too large.

Maximum speed for not slipping is given by

vmax = √(µsgR)

On substituting the given values, we get

vmax = √(0.1 x 9.8 x 3) = 1.71 m/s

  • For radius, R = 3 m, maximum speed should be 1.71 m/s. But his speed is 4.5 km/h or 1.25 m/s. Therefore, he will not slip.
  • Since the maximum permissible speed is 1.71 m/s, if his speed is 9 km/h i.e. 2.5 m/s, then he will slip.

Ques. The angle of banking for a cyclist taking a turn at a curve is given by tanθ = vn/rg where symbols have their usual meaning. The value of n is (2 marks)
(a) 1
(b) 2
(c) 3
(d) 4

Ans. The correct answer is b. 2

Explanation: For a perfectly smooth road (i.e. µs = 0), the optimum speed is given by

v = (rg tanθ)1/2

On squaring both sides, we get

v= rg tanθ

⇒ tanθ = v2/rg

Ques. Find the maximum speed with which a car can turn on a bend without skidding. If the radius of the bend is 20 m and the coefficient of friction between the road and tyres is 0.4. (2 marks)

Ans. Given

  • Coefficient of friction between the tyres and road, µs = 0.4
  • The radius of the circular bend, R = 20 m

The maximum speed with which a car can turn on a bend without skidding is given by

vmax = √(µsgR)

On substituting the given values, we get

vmax = √(0.4 x 9.8 x 20) = 8.85 m/s

Ques. When a car moves on a banked road, the centripetal force is due to (2 marks)
(a) Frictional force
(b) Vertical component of the normal force and the frictional force
(c) The horizontal component of the normal force
(d) The horizontal component of the normal force and the frictional force

Ans. The correct answer is d. The horizontal component of the normal force and the frictional force

Explanation: When a car moves on a banked road, the horizontal component of normal reaction force and frictional force provides the necessary centripetal force.

For Latest Updates on Upcoming Board Exams, Click Here: https://t.me/class_10_12_board_updates


Check-Out: 

CBSE CLASS XII Related Questions

1.
A circular disc is rotating about its own axis. An external opposing torque 0.02 Nm is applied on the disc by which it comes rest in 5 seconds. The initial angular momentum of disc is

    • $0.1\,kgm^2s^{-1}$
    • $0.04\,kgm^2s^{-1}$
    • $0.025\,kgm^2s^{-1}$
    • $0.01\,kgm^2s^{-1}$

    2.
    A closely wound solenoid of \(2000 \) turns and area of cross-section \(1.6 × 10^{-4}\  m^2\), carrying a current of \(4.0 \ A\), is suspended through its centre allowing it to turn in a horizontal plane. 
    (a) What is the magnetic moment associated with the solenoid?
    (b) What is the force and torque on the solenoid if a uniform horizontal magnetic field of \(7.5 × 10^{-2}\  T\) is set up at an angle of \(30º\) with the axis of the solenoid?

        3.
        A boy of mass 50 kg is standing at one end of a, boat of length 9 m and mass 400 kg. He runs to the other, end. The distance through which the centre of mass of the boat boy system moves is

          • 0
          • 1 m

          • 2 m

          • 3 m

          4.
          A series LCR circuit with R = 20 W, L = 1.5 H and C = 35 μF is connected to a variable-frequency 200 V ac supply. When the frequency of the supply equals the natural frequency of the circuit, what is the average power transferred to the circuit in one complete cycle?

              5.
              A spherical conductor of radius 12 cm has a charge of 1.6 × 10–7C distributed uniformly on its surface. What is the electric field ?
              1. inside the sphere
              2. just outside the sphere
              3. at a point 18 cm from the centre of the sphere?

                  6.

                  An object of size 3.0 cm is placed 14cm in front of a concave lens of focal length 21cm. Describe the image produced by the lens. What happens if the object is moved further away from the lens?

                      CBSE CLASS XII Previous Year Papers

                      Comments



                      No Comments To Show