An electric dipole of dipole moment vec p is placed in a uniform electric field vec E. Find the maximum torque experienced by the dipole.

Collegedunia Team logo

Collegedunia Team

Content Curator

When an electric dipole of dipole moment vector p is placed in a uniform electric field vector E, it experiences a torque given by the formula:

τ = p × E

where τ is the torque vector, p is the dipole moment vector, and E is the electric field vector.

The magnitude of the torque is given by:

|τ| = p E sin θ

where θ is the angle between the dipole moment vector and the electric field vector.

The maximum torque occurs when the dipole moment vector is perpendicular to the electric field vector, i.e., when θ = 90 degrees. In this case, sin θ = 1, and the magnitude of the torque is:

|τ|max = p E

Therefore, the maximum torque experienced by the dipole is equal to the product of the dipole moment and the electric field strength.

Electric Dipole in External Field

Electric Dipole in External Field

Also check:

CBSE CLASS XII Related Questions

1.

A parallel plate capacitor made of circular plates each of radius R = 6.0 cm has a capacitance C = 100 pF. The capacitor is connected to a 230 V ac supply with a (angular) frequency of 300 rad s−1.

  1. What is the rms value of the conduction current?
  2. Is the conduction current equal to the displacement current?
  3. Determine the amplitude of B at a point 3.0 cm from the axis between the plates.
A parallel plate capacitor made of circular plates

      2.
      A boy of mass 50 kg is standing at one end of a, boat of length 9 m and mass 400 kg. He runs to the other, end. The distance through which the centre of mass of the boat boy system moves is

        • 0
        • 1 m

        • 2 m

        • 3 m

        3.
        Two charges 5 × 10–8 C and –3 × 10–8 C are located 16 cm apart. At what point(s) on the line joining the to charges is the electric potential zero? Take the potential at infinity to be zero.

            4.
            A series LCR circuit with R = 20 W, L = 1.5 H and C = 35 μF is connected to a variable-frequency 200 V ac supply. When the frequency of the supply equals the natural frequency of the circuit, what is the average power transferred to the circuit in one complete cycle?

                5.

                In a parallel plate capacitor with air between the plates, each plate has an area of 6 × 10–3 m2 and the distance between the plates is 3 mm. Calculate the capacitance of the capacitor. If this capacitor is connected to a 100 V supply, what is the charge on each plate of the capacitor?

                    6.
                    A spherical conductor of radius 12 cm has a charge of 1.6 × 10–7C distributed uniformly on its surface. What is the electric field ?
                    1. inside the sphere
                    2. just outside the sphere
                    3. at a point 18 cm from the centre of the sphere?

                        CBSE CLASS XII Previous Year Papers

                        Comments



                        No Comments To Show