State Gauss law in electrostatics. Using the law derive an expression for electric field due to a uniformly charged thin spherical shell at a point outside the shell.

Collegedunia Team logo

Collegedunia Team Content Curator

Content Curator

Gauss’s law relates the flux through a closed surface (a surface that encloses some volume) with the electric charges present inside the surface.

According to Gauss's law, the total electric flux (Φ) through any closed surface that surrounds a charge (q) in free space is equal to the charge divided by the absolute permittivity (∈o). 

Φ = \(\frac{q}{ \in _0}\)

Since, electric flux, \(\phi = \oint _s \overrightarrow{E} . \overrightarrow{ds}\)

Therefore, Gauss’s law can be written as

\(\phi = \oint _s \overrightarrow{E} . \overrightarrow{ds} = \frac{q}{ \in _0}\)

Expression for electric field intensity due to a uniformly charged thin spherical shell at a point outside the shell

Consider a thin spherical shell of radius R having a charge Q uniformly distributed on its surface.

Consider a thin spherical shell of radius R having a charge Q uniformly distributed on its surface.

We will find electric field intensity at distance r from the center of the shell, such that r > R. We enclose the shell in a gaussian sphere of radius r.

According to Gauss’s theorem, the net electric flux through the gaussian surface is given by

\(\phi = \oint _s \overrightarrow{E} . \overrightarrow{ds} = \frac{Q}{ \in _0}\Rightarrow \oint _s Eds cos \theta =\frac{Q}{ \in _0} \)

Direction of the electric field is always perpendicular to the surface. So, the angle between E and ds is 0.

Direction of the electric field is always perpendicular to the surface. So, the angle between E and ds is 0.

\(\oint _s\) Eds cos0 = \(\frac{Q}{ \in _0} \)

⇒ \(\oint _s\)Eds = \(\frac{Q}{ \in _0} \)

Since the electric field is constant at every point of the gaussian surface, therefore we can write

E\(\oint _s\)ds = \(\frac{Q}{ \in _0} \)

But, \(\oint _s\)ds  = 4πr2 is the surface area of sphere

⇒ E x 4πr2\(\frac{Q}{ \in _0} \)

⇒ E = \(\frac{Q}{4 \pi \in_o r^2}\)


Also Read:

CBSE CLASS XII Related Questions

  • 1.
    Draw a ray diagram showing the image formation when a concave mirror produces a real, inverted, and magnified image of an object and hence obtain the mirror formula.


      • 2.
        A ray of light is incident on a refracting face AB of a prism ABC at an angle of \( 45^\circ \). The ray emerges from face AC and the angle of deviation is \( 15^\circ \). The angle of prism is \( 30^\circ \). Show that the emergent ray is normal to the face AC from which it emerges out. Find the refraction index of the material of the prism.


          • 3.
            The ratio of the intensities at maxima to minima in Young’s double-slit experiment is \( 25 : 9 \). Calculate the ratio of intensities of the interfering waves.


              • 4.
                The electric field at a point in a region is given by \( \vec{E} = \alpha \frac{\hat{r}}{r^3} \), where \( \alpha \) is a constant and \( r \) is the distance of the point from the origin. The magnitude of potential of the point is:

                  • \( \frac{\alpha}{r} \)
                  • \( \frac{\alpha r^2}{2} \)
                  • \( \frac{\alpha}{2r^2} \)
                  • \( -\frac{\alpha}{r} \)

                • 5.
                  Two point charges \( 5 \, \mu C \) and \( -1 \, \mu C \) are placed at points \( (-3 \, \text{cm}, 0, 0) \) and \( (3 \, \text{cm}, 0, 0) \), respectively. An external electric field \( \vec{E} = \frac{A}{r^2} \hat{r} \) where \( A = 3 \times 10^5 \, \text{V m} \) is switched on in the region. Calculate the change in electrostatic energy of the system due to the electric field.


                    • 6.
                      Two point charges \( q_1 = 16 \, \mu C \) and \( q_2 = 1 \, \mu C \) are placed at points \( \vec{r}_1 = (3 \, \text{m}) \hat{i}\) and \( \vec{r}_2 = (4 \, \text{m}) \hat{j} \). Find the net electric field \( \vec{E} \) at point \( \vec{r} = (3 \, \text{m}) \hat{i} + (4 \, \text{m}) \hat{j} \).

                        CBSE CLASS XII Previous Year Papers

                        Comments


                        No Comments To Show