State Gauss law in electrostatics. Using the law derive an expression for electric field due to a uniformly charged thin spherical shell at a point outside the shell.

Collegedunia Team logo

Collegedunia Team Content Curator

Content Curator

Gauss’s law relates the flux through a closed surface (a surface that encloses some volume) with the electric charges present inside the surface.

According to Gauss's law, the total electric flux (Φ) through any closed surface that surrounds a charge (q) in free space is equal to the charge divided by the absolute permittivity (∈o). 

Φ = \(\frac{q}{ \in _0}\)

Since, electric flux, \(\phi = \oint _s \overrightarrow{E} . \overrightarrow{ds}\)

Therefore, Gauss’s law can be written as

\(\phi = \oint _s \overrightarrow{E} . \overrightarrow{ds} = \frac{q}{ \in _0}\)

Expression for electric field intensity due to a uniformly charged thin spherical shell at a point outside the shell

Consider a thin spherical shell of radius R having a charge Q uniformly distributed on its surface.

Consider a thin spherical shell of radius R having a charge Q uniformly distributed on its surface.

We will find electric field intensity at distance r from the center of the shell, such that r > R. We enclose the shell in a gaussian sphere of radius r.

According to Gauss’s theorem, the net electric flux through the gaussian surface is given by

\(\phi = \oint _s \overrightarrow{E} . \overrightarrow{ds} = \frac{Q}{ \in _0}\Rightarrow \oint _s Eds cos \theta =\frac{Q}{ \in _0} \)

Direction of the electric field is always perpendicular to the surface. So, the angle between E and ds is 0.

Direction of the electric field is always perpendicular to the surface. So, the angle between E and ds is 0.

\(\oint _s\) Eds cos0 = \(\frac{Q}{ \in _0} \)

⇒ \(\oint _s\)Eds = \(\frac{Q}{ \in _0} \)

Since the electric field is constant at every point of the gaussian surface, therefore we can write

E\(\oint _s\)ds = \(\frac{Q}{ \in _0} \)

But, \(\oint _s\)ds  = 4πr2 is the surface area of sphere

⇒ E x 4πr2\(\frac{Q}{ \in _0} \)

⇒ E = \(\frac{Q}{4 \pi \in_o r^2}\)


Also Read:

CBSE CLASS XII Related Questions

  • 1.
    A current carrying circular loop of area A produces a magnetic field \( B \) at its centre. Show that the magnetic moment of the loop is \( \frac{2BA}{\mu_0} \sqrt{\frac{A}{\pi}} \).


      • 2.
        The distance of an object from the first focal point of a biconvex lens is \( X_1 \) and distance of the image from second focal point is \( X_2 \). The focal length of the lens is:

          • \( X_1 X_2 \)
          • \( \sqrt{X_1 + X_2} \)
          • \( \sqrt{X_1 X_2} \)
          • \( \frac{X_2}{X_1} \)

        • 3.

          Two slits 0.1 mm apart are arranged 1.20 m from a screen. Light of wavelength 600 nm from a distant source is incident on the slits. How far apart will adjacent bright interference fringes be on the screen? 


            • 4.
              An electron in Bohr model of hydrogen atom makes a transition from energy level \(-1.51 \, \text{eV}\) to \(-3.40 \, \text{eV}\). Calculate the change in the radius of its orbit. The radius of orbit of electron in its ground state is \(0.53 \, \text{\AA}\).


                • 5.
                  Two point charges \( 5 \, \mu C \) and \( -1 \, \mu C \) are placed at points \( (-3 \, \text{cm}, 0, 0) \) and \( (3 \, \text{cm}, 0, 0) \), respectively. An external electric field \( \vec{E} = \frac{A}{r^2} \hat{r} \) where \( A = 3 \times 10^5 \, \text{V m} \) is switched on in the region. Calculate the change in electrostatic energy of the system due to the electric field.


                    • 6.
                      Three batteries E1, E2, and E3 of emfs and internal resistances (4 V, 2 \(\Omega\)), (2 V, 4 \(\Omega\)) and (6 V, 2 \(\Omega\)) respectively are connected as shown in the figure. Find the values of the currents passing through batteries E1, E2, and E3.
                      Three batteries E1, E2, and E3 of emfs and internal resistances

                        CBSE CLASS XII Previous Year Papers

                        Comments


                        No Comments To Show