State Gauss law in electrostatics. Using the law derive an expression for electric field due to a uniformly charged thin spherical shell at a point outside the shell.

Collegedunia Team logo

Collegedunia Team

Content Curator

Gauss’s law relates the flux through a closed surface (a surface that encloses some volume) with the electric charges present inside the surface.

According to Gauss's law, the total electric flux (Φ) through any closed surface that surrounds a charge (q) in free space is equal to the charge divided by the absolute permittivity (∈o). 

Φ = \(\frac{q}{ \in _0}\)

Since, electric flux, \(\phi = \oint _s \overrightarrow{E} . \overrightarrow{ds}\)

Therefore, Gauss’s law can be written as

\(\phi = \oint _s \overrightarrow{E} . \overrightarrow{ds} = \frac{q}{ \in _0}\)

Expression for electric field intensity due to a uniformly charged thin spherical shell at a point outside the shell

Consider a thin spherical shell of radius R having a charge Q uniformly distributed on its surface.

Consider a thin spherical shell of radius R having a charge Q uniformly distributed on its surface.

We will find electric field intensity at distance r from the center of the shell, such that r > R. We enclose the shell in a gaussian sphere of radius r.

According to Gauss’s theorem, the net electric flux through the gaussian surface is given by

\(\phi = \oint _s \overrightarrow{E} . \overrightarrow{ds} = \frac{Q}{ \in _0}\Rightarrow \oint _s Eds cos \theta =\frac{Q}{ \in _0} \)

Direction of the electric field is always perpendicular to the surface. So, the angle between E and ds is 0.

Direction of the electric field is always perpendicular to the surface. So, the angle between E and ds is 0.

\(\oint _s\) Eds cos0 = \(\frac{Q}{ \in _0} \)

⇒ \(\oint _s\)Eds = \(\frac{Q}{ \in _0} \)

Since the electric field is constant at every point of the gaussian surface, therefore we can write

E\(\oint _s\)ds = \(\frac{Q}{ \in _0} \)

But, \(\oint _s\)ds  = 4πr2 is the surface area of sphere

⇒ E x 4πr2\(\frac{Q}{ \in _0} \)

⇒ E = \(\frac{Q}{4 \pi \in_o r^2}\)


Also Read:

CBSE CLASS XII Related Questions

1.
A spherical conductor of radius 12 cm has a charge of 1.6 × 10–7C distributed uniformly on its surface. What is the electric field ?
  1. inside the sphere
  2. just outside the sphere
  3. at a point 18 cm from the centre of the sphere?

      2.
      A convex lens of glass is immersed in water compared to its power in air, its power in water will

        • increase
        • decrease
        • not change
        • decrease for red light increase for violet light

        3.
        A boy of mass 50 kg is standing at one end of a, boat of length 9 m and mass 400 kg. He runs to the other, end. The distance through which the centre of mass of the boat boy system moves is

          • 0
          • 1 m

          • 2 m

          • 3 m

          4.
          (a) A circular coil of 30 turns and radius 8.0 cm carrying a current of 6.0 A is suspended vertically in a uniform horizontal magnetic field of magnitude 1.0 T. The field lines make an angle of 60° with the normal of the coil. Calculate the magnitude of the counter torque that must be applied to prevent the coil from turning. 
          (b) Would your answer change, if the circular coil in (a) were replaced by a planar coil of some irregular shape that encloses the same area? (All other particulars are also unaltered.)

              5.
              A series LCR circuit with R = 20 W, L = 1.5 H and C = 35 μF is connected to a variable-frequency 200 V ac supply. When the frequency of the supply equals the natural frequency of the circuit, what is the average power transferred to the circuit in one complete cycle?

                  6.

                  Three capacitors each of capacitance 9 pF are connected in series. 

                  (a) What is the total capacitance of the combination? 

                  (b) What is the potential difference across each capacitor if the combination is connected to a 120 V supply?

                      CBSE CLASS XII Previous Year Papers

                      Comments



                      No Comments To Show