NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions Exercise 1.4

Jasmine Grover logo

Jasmine Grover Study Abroad Expert

Study Abroad Expert

CBSE CLASS XII Related Questions

  • 1.
    The integrating factor of the differential equation \( \frac{dy}{dx} + y = \frac{1 + y}{x} \) is:


      • 2.
        Let $f'(x) = 3(x^2 + 2x) - \frac{4}{x^3} + 5$, $f(1) = 0$. Then, $f(x)$ is:

          • $x^3 + 3x^2 + \frac{2}{x^2} + 5x + 11$
          • $x^3 + 3x^2 + \frac{2}{x^2} + 5x - 11$
          • $x^3 + 3x^2 - \frac{2}{x^2} + 5x - 11$
          • $x^3 - 3x^2 - \frac{2}{x^2} + 5x - 11$

        • 3.
          Evaluate : \[ I = \int_0^{\frac{\pi}{4}} \frac{dx}{\cos^3 x \sqrt{2 \sin 2x}} \]


            • 4.
              Solve the differential equation: \[ x^2y \, dx - (x^3 + y^3) \, dy = 0. \]


                • 5.
                  The diagonals of a parallelogram are given by \( \mathbf{a} = 2 \hat{i} - \hat{j} + \hat{k} \) and \( \mathbf{b} = \hat{i} + 3 \hat{j} - \hat{k}\) . Find the area of the parallelogram.


                    • 6.
                      Solve the following linear programming problem graphically: Maximise \( Z = x + 2y \) Subject to the constraints: \[ x - y \geq 0 \] \[ x - 2y \geq -2 \] \[ x \geq 0, \, y \geq 0 \]

                        CBSE CLASS XII Previous Year Papers

                        Comments


                        No Comments To Show