NCERT Solutions for Class 12 Maths Chapter 4 Determinants

Jasmine Grover logo

Jasmine Grover Content Strategy Manager

Content Strategy Manager

NCERT Solutions for Class 12 Maths Chapter 4 Determinants covers important concepts of Determinants of a matrix and inverse of a matrix. A determinant of the matrix is a scalar value that is calculated using a square matrix. To every square matrix, we can associate a number that is real or complex. The determinant is denoted by det A or |A|. The NCERT Solutions of Chapter 4 Determinants deals with properties of determinants, area of a triangle, minors and cofactors, and applications of matrices and determinants.

The unit algebra comprising Chapter 3 Matrices and Chapter 4 Determinants has a weightage of 10 marks in the final CBSE Board examination. The questions asked from the chapter generally include adjoint and inverse matrices, finding the determinants of a given matrix, and solving a system of linear equations in two or three variables

Download PDF: NCERT Solutions for Chapter 4 Determinants


NCERT Solutions for Class 12 Mathematics Chapter 4 Determinants

NCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 Determinants

Important Topics in Class 12 Mathematics Chapter 4 Determinants

  • Each square matrix of the order n can associate a number known as determinants of the square matrix A. It can be of orders one, two, and three.
  1. Determinant of order one: Consider a matrix A = [a], the determinant of this matrix is equal to a.
  1. Determinant of order two: If the order of the matrix is 2, and the given matrix A is-  \([ \begin{matrix} a_{11} & a_{12} \\ a_{21} & a_{22}\\ \end{matrix} ]\)
    Determinant of A, |A| = \(| \begin{matrix} a_{11} & a_{12} \\ a_{21} & a_{22}\\ \end{matrix} |\), = a11.a22 - a21.a12
  1. Determinant of order three:  If the order of the matrix is 2, and the given matrix A is-  \([ \begin{matrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33}\\ \end{matrix} ]\)
    Determinant of A, |A| = a11 a22 a33 – a11 a23 a32 – a12 a21 a33 + a12 a23 a31 + a13 a21 a32 – a13 a31 a22
  •  The area of a triangle with vertices (x1, y1), (x2, y2) and (x3, y3) is given by – A = ½ [x1(y2–y3) + x2(y3–y1) + x3(y1–y2)].

We can find the area of a triangle using determinants by \(\begin{array}{l}\Delta = \frac{1}{2}\begin{vmatrix} x_{1} & y_{1} & 1\\ x_{2} & y_{2} & 1\\ x_{3} & y_{3} & 1 \end{vmatrix}\end{array}\)
  • Minors and Cofactors: Suppose \(\begin{array}{l}\Delta = \begin{vmatrix} a & b & c\\ d & e & f\\ g & h & i \end{vmatrix}\end{array}\)

Minor = \(\begin{array}{l}M_{f}=\begin{vmatrix} a & b\\ g & h \end{vmatrix}\end{array}\), Mf = a.h – b.g

Cofactor of an element aij in determinant is defined as Aij= (-1)i+jMij


NCERT Solutions For Class 12 Maths Chapter 4 Exercises:

The detailed solutions for all the NCERT Solutions for Chapter 4 Determinants under different exercises are as follows:


Also Read:

Check-Out: 

CBSE CLASS XII Related Questions

  • 1.
    Find the least value of ‘a’ so that $f(x) = 2x^2 - ax + 3$ is an increasing function on $[2, 4]$.


      • 2.
        Find the distance of the point $(-1, -5, -10)$ from the point of intersection of the lines \[ \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4}, \quad \frac{x - 4}{5} = \frac{y - 1}{2} = z. \]


          • 3.
            Evaluate: $ \tan^{-1} \left[ 2 \sin \left( 2 \cos^{-1} \frac{\sqrt{3}}{2} \right) \right]$


              • 4.
                If $f: \mathbb{R} \to \mathbb{R}$ is defined as $f(x) = 2x - \sin x$, then $f$ is:

                  • a decreasing function
                  • an increasing function
                  • maximum at $x = \frac{\pi}{2}$
                  • maximum at $x = 0$

                • 5.
                  If \( \mathbf{a} \) and \( \mathbf{b} \) are position vectors of two points \( P \) and \( Q \) respectively, then find the position vector of a point \( R \) in \( QP \) produced such that \[ QR = \frac{3}{2} QP. \]


                    • 6.
                      Find : \[ I = \int \frac{x + \sin x}{1 + \cos x} \, dx \]

                        CBSE CLASS XII Previous Year Papers

                        Comments


                        No Comments To Show