NCERT Solutions for Class 12 Maths Chapter 4 Determinants

Jasmine Grover logo

Jasmine Grover Study Abroad Expert

Study Abroad Expert

NCERT Solutions for Class 12 Maths Chapter 4 Determinants covers important concepts of Determinants of a matrix and inverse of a matrix. A determinant of the matrix is a scalar value that is calculated using a square matrix. To every square matrix, we can associate a number that is real or complex. The determinant is denoted by det A or |A|. The NCERT Solutions of Chapter 4 Determinants deals with properties of determinants, area of a triangle, minors and cofactors, and applications of matrices and determinants.

The unit algebra comprising Chapter 3 Matrices and Chapter 4 Determinants has a weightage of 10 marks in the final CBSE Board examination. The questions asked from the chapter generally include adjoint and inverse matrices, finding the determinants of a given matrix, and solving a system of linear equations in two or three variables

Download PDF: NCERT Solutions for Chapter 4 Determinants


NCERT Solutions for Class 12 Mathematics Chapter 4 Determinants

NCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 DeterminantsNCERT Solutions For Class 12 Mathematics Chapter 4 Determinants

Important Topics in Class 12 Mathematics Chapter 4 Determinants

  • Each square matrix of the order n can associate a number known as determinants of the square matrix A. It can be of orders one, two, and three.
  1. Determinant of order one: Consider a matrix A = [a], the determinant of this matrix is equal to a.
  1. Determinant of order two: If the order of the matrix is 2, and the given matrix A is-  \([ \begin{matrix} a_{11} & a_{12} \\ a_{21} & a_{22}\\ \end{matrix} ]\)
    Determinant of A, |A| = \(| \begin{matrix} a_{11} & a_{12} \\ a_{21} & a_{22}\\ \end{matrix} |\), = a11.a22 - a21.a12
  1. Determinant of order three:  If the order of the matrix is 2, and the given matrix A is-  \([ \begin{matrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33}\\ \end{matrix} ]\)
    Determinant of A, |A| = a11 a22 a33 – a11 a23 a32 – a12 a21 a33 + a12 a23 a31 + a13 a21 a32 – a13 a31 a22
  •  The area of a triangle with vertices (x1, y1), (x2, y2) and (x3, y3) is given by – A = ½ [x1(y2–y3) + x2(y3–y1) + x3(y1–y2)].

We can find the area of a triangle using determinants by \(\begin{array}{l}\Delta = \frac{1}{2}\begin{vmatrix} x_{1} & y_{1} & 1\\ x_{2} & y_{2} & 1\\ x_{3} & y_{3} & 1 \end{vmatrix}\end{array}\)
  • Minors and Cofactors: Suppose \(\begin{array}{l}\Delta = \begin{vmatrix} a & b & c\\ d & e & f\\ g & h & i \end{vmatrix}\end{array}\)

Minor = \(\begin{array}{l}M_{f}=\begin{vmatrix} a & b\\ g & h \end{vmatrix}\end{array}\), Mf = a.h – b.g

Cofactor of an element aij in determinant is defined as Aij= (-1)i+jMij


NCERT Solutions For Class 12 Maths Chapter 4 Exercises:

The detailed solutions for all the NCERT Solutions for Chapter 4 Determinants under different exercises are as follows:


Also Read:

Check-Out: 

CBSE CLASS XII Related Questions

  • 1.
    Evaluate : \[ I = \int_0^{\frac{\pi}{4}} \frac{dx}{\cos^3 x \sqrt{2 \sin 2x}} \]


      • 2.
        Let \( A \) be a matrix of order \( m \times n \) and \( B \) be a matrix such that \( A^T B \) and \( B A^T \) are defined. Then, the order of \( B \) is:


          • 3.
            Let $f(x) = |x|$, $x \in \mathbb{R}$. Then, which of the following statements is incorrect?

              • $f$ has a minimum value at $x = 0$
              • $f$ has no maximum value in $\mathbb{R}$
              • $f$ is continuous at $x = 0$
              • $f$ is differentiable at $x = 0$

            • 4.
              The integrating factor of the differential equation \( \frac{dy}{dx} + y = \frac{1 + y}{x} \) is:


                • 5.
                  Let $f'(x) = 3(x^2 + 2x) - \frac{4}{x^3} + 5$, $f(1) = 0$. Then, $f(x)$ is:

                    • $x^3 + 3x^2 + \frac{2}{x^2} + 5x + 11$
                    • $x^3 + 3x^2 + \frac{2}{x^2} + 5x - 11$
                    • $x^3 + 3x^2 - \frac{2}{x^2} + 5x - 11$
                    • $x^3 - 3x^2 - \frac{2}{x^2} + 5x - 11$

                  • 6.
                    Let the polished side of the mirror be along the line \[ \frac{x}{1} = \frac{1 - y}{2} = \frac{2z - 4}{6}. \] A point \( P(1, 6, 3) \), some distance away from the mirror, has its image formed behind the mirror. Find the coordinates of the image point and the distance between the point \( P \) and its image.

                      CBSE CLASS XII Previous Year Papers

                      Comments


                      No Comments To Show