Define gravitational flux in analogy to electric flux. How does gravitational flux differ from electric flux?

Jasmine Grover logo

Jasmine Grover

Content Strategy Manager

Gravitational flux is a measure of the amount of gravitational field passing through a given area, just as electric flux is a measure of the amount of electric field passing through a given area. It is similar to electric flux in that it is a measure of the strength of the field at a point, and is calculated by taking the dot product of the field vector and the area vector.

However, gravitational flux differs from the electric flux in a few key ways.

  • Firstly, while electric fields can be both positive and negative, gravitational fields are always attractive, meaning that they are always directed towards the source of the field.
  • This means that the gravitational flux through a closed surface is always negative, while the electric flux can be either positive or negative.
  • Another key difference is that while electric fields are generated by charges, gravitational fields are generated by masses.
  • This means that the gravitational flux through a given area is dependent on the mass of the object generating the field, as well as the distance between the object and the area.

Gravitational Flux = \(\overrightarrow{g}.\overrightarrow{A}\)

Electric flux = \(\overrightarrow{E}.\overrightarrow{A}\)

Magnetic flux\(\overrightarrow{B}.\overrightarrow{A}\)

Both gravitational flux and electric flux have similar formulas. They are measures of the strength of a field passing through a given area. Gravitational flux is always negative and depends on the mass of the object generating the field. The electric flux can be positive or negative and depends on the charges generating the field.

Read More:

CBSE CLASS XII Related Questions

1.

Three capacitors each of capacitance 9 pF are connected in series. 

(a) What is the total capacitance of the combination? 

(b) What is the potential difference across each capacitor if the combination is connected to a 120 V supply?

      2.
      A capillary tube of radius r is dipped inside a large vessel of water. The mass of water raised above water level is M. If the radius of capillary is doubled, the mass of water inside capillary will be

        • 5M
        • 2M
        • \(\frac M4\)

        • M

        3.
        Two charges 5 × 10–8 C and –3 × 10–8 C are located 16 cm apart. At what point(s) on the line joining the to charges is the electric potential zero? Take the potential at infinity to be zero.

            4.
            A convex lens of glass is immersed in water compared to its power in air, its power in water will

              • increase
              • decrease
              • not change
              • decrease for red light increase for violet light

              5.
              A closely wound solenoid of \(2000 \) turns and area of cross-section \(1.6 × 10^{-4}\  m^2\), carrying a current of \(4.0 \ A\), is suspended through its centre allowing it to turn in a horizontal plane. 
              (a) What is the magnetic moment associated with the solenoid?
              (b) What is the force and torque on the solenoid if a uniform horizontal magnetic field of \(7.5 × 10^{-2}\  T\) is set up at an angle of \(30º\) with the axis of the solenoid?

                  6.

                  A tank is filled with water to a height of 12.5cm. The apparent depth of a needle lying at the bottom of the tank is measured by a microscope to be 9.4cm. What is the refractive index of water? If water is replaced by a liquid of refractive index 1.63 up to the same height, by what distance would the microscope have to be moved to focus on the needle again?

                      CBSE CLASS XII Previous Year Papers

                      Comments



                      No Comments To Show