NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Exercise 5.5

Namrata Das logo

Namrata Das Exams Prep Master

Exams Prep Master

NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability comprises all solutions for all Exercise 5.5 questions. Exercise 5.5 is based on logarithmic differentiation. NCERT Solutions for Class 12 Maths Chapter 5 will carry a weightage of around 8-17 marks in the CBSE Term 2 Exam 2022. NCERT has provided a total of 18 problems and solutions based on the important topic covered in this exercise. 

Download PDF NCERT Solutions for Class 12 Chapter 5 Continuity and Differentiability Exercise 5.5

NCERT Solutions for Class 12 Maths Chapter 5: Important Topics

Important topics covered in the Continuity and Differentiability chapter are:

  • Mean Value Theorem
  • Rolle’s Theorem
  • Limits
  • Euler’s Number
  • Quotient Rule

Also check: NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability

Other Exercise Solutions of Class 12 Maths Chapter 5 Continuity and Differentiability

Exercise 5.1 Solutions 34 Questions (Short Answers)
Exercise 5.2 Solutions 10 Questions(Short Answers)
Exercise 5.3 Solutions 15 Questions ( Short Answers)
Exercise 5.4 Solutions 10 Questions (Short Answers)
Exercise 5.5 Solutions 18 Questions ( Short Answers)
Exercise 5.6 Solutions 11 Questions (Short Answers)
Exercise 5.7 Solutions 17 Questions (Short Answers)
Exercise 5.8 Solutions 6 Questions (Short Answers)
Miscellaneous Exercise Solutions 23 Questions (6 Long Answers, 17 Short Answers)

Chapter 5 Continuity and Differentiability Topics:

CBSE Class 12 Mathematics Study Guides:

CBSE CLASS XII Related Questions

  • 1.
    Let $f'(x) = 3(x^2 + 2x) - \frac{4}{x^3} + 5$, $f(1) = 0$. Then, $f(x)$ is:

      • $x^3 + 3x^2 + \frac{2}{x^2} + 5x + 11$
      • $x^3 + 3x^2 + \frac{2}{x^2} + 5x - 11$
      • $x^3 + 3x^2 - \frac{2}{x^2} + 5x - 11$
      • $x^3 - 3x^2 - \frac{2}{x^2} + 5x - 11$

    • 2.
      If $f : \mathbb{N} \rightarrow \mathbb{W}$ is defined as \[ f(n) = \begin{cases} \frac{n}{2}, & \text{if } n \text{ is even} \\ 0, & \text{if } n \text{ is odd} \end{cases} \] then $f$ is :

        • injective only
        • surjective only
        • a bijection
        • neither surjective nor injective

      • 3.
        Solve the differential equation: \[ x^2y \, dx - (x^3 + y^3) \, dy = 0. \]


          • 4.
            Let \( A \) be a matrix of order \( m \times n \) and \( B \) be a matrix such that \( A^T B \) and \( B A^T \) are defined. Then, the order of \( B \) is:


              • 5.
                Solve the following linear programming problem graphically: Maximise \( Z = x + 2y \) Subject to the constraints: \[ x - y \geq 0 \] \[ x - 2y \geq -2 \] \[ x \geq 0, \, y \geq 0 \]


                  • 6.
                    The diagonals of a parallelogram are given by \( \mathbf{a} = 2 \hat{i} - \hat{j} + \hat{k} \) and \( \mathbf{b} = \hat{i} + 3 \hat{j} - \hat{k}\) . Find the area of the parallelogram.

                      CBSE CLASS XII Previous Year Papers

                      Comments


                      No Comments To Show