NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Exercise 5.4

Namrata Das logo

Namrata Das Exams Prep Master

Exams Prep Master

NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Exercise 5.4 is covered in this article. Exercise 5.4 is based on exponential and logarithmic functions. NCERT Solutions for Class 12 Maths Chapter 5 will carry a weightage of around 8-17 marks in the CBSE Term 2 Exam 2022. NCERT has provided a total of 10 problems and solutions based on the important topics covered in this exercise. 

Download PDF NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Exercise 5.4

NCERT Solutions for Class 12 Maths Chapter 5: Important Topics

Important topics covered in the Continuity and Differentiability chapter are:

  • Mean Value Theorem
  • Rolle’s Theorem
  • Limits
  • Euler’s Number
  • Quotient Rule

Also check: NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability

Other Exercise Solutions of Class 12 Maths Chapter 5 Continuity and Differentiability

Exercise 5.1 Solutions 34 Questions (Short Answers)
Exercise 5.2 Solutions 10 Questions(Short Answers)
Exercise 5.3 Solutions 15 Questions ( Short Answers)
Exercise 5.4 Solutions 10 Questions (Short Answers)
Exercise 5.5 Solutions 18 Questions ( Short Answers)
Exercise 5.6 Solutions 11 Questions (Short Answers)
Exercise 5.7 Solutions 17 Questions (Short Answers)
Exercise 5.8 Solutions 6 Questions (Short Answers)
Miscellaneous Exercise Solutions 23 Questions (6 Long Answers, 17 Short Answers)

Chapter 5 Continuity and Differentiability Topics:

CBSE Class 12 Mathematics Study Guides:

CBSE CLASS XII Related Questions

  • 1.
    Let \( 2x + 5y - 1 = 0 \) and \( 3x + 2y - 7 = 0 \) represent the equations of two lines on which the ants are moving on the ground. Using matrix method, find a point common to the paths of the ants.


      • 2.
        If \[ \begin{bmatrix} 4 + x & x - 1 \\ -2 & 3 \end{bmatrix} \] is a singular matrix, then the value of \( x \) is:

          • 0
          • 1
          • -2
          • -4

        • 3.
          If \( \mathbf{a} \) and \( \mathbf{b} \) are position vectors of two points \( P \) and \( Q \) respectively, then find the position vector of a point \( R \) in \( QP \) produced such that \[ QR = \frac{3}{2} QP. \]


            • 4.

              Draw a rough sketch for the curve $y = 2 + |x + 1|$. Using integration, find the area of the region bounded by the curve $y = 2 + |x + 1|$, $x = -4$, $x = 3$, and $y = 0$.


                • 5.
                  Let $|\vec{a}| = 5 \text{ and } -2 \leq \lambda \leq 1$. Then, the range of $|\lambda \vec{a}|$ is:

                    • [5, 10]
                    • [-2, 5]
                    • [-1, 5]
                    • [10, 5]

                  • 6.
                    Let both $AB'$ and $B'A$ be defined for matrices $A$ and $B$. If the order of $A$ is $n \times m$, then the order of $B$ is:

                      • $n \times n$
                      • $n \times m$
                      • $m \times m$
                      • $m \times n$
                    CBSE CLASS XII Previous Year Papers

                    Comments


                    No Comments To Show