NCERT Solutions for Class 12 Maths Chapter 4 Determinants Exercise 4.2

Jasmine Grover logo

Jasmine Grover Content Strategy Manager

Content Strategy Manager

CBSE CLASS XII Related Questions

  • 1.
    Let $|\vec{a}| = 5 \text{ and } -2 \leq \lambda \leq 1$. Then, the range of $|\lambda \vec{a}|$ is:

      • [5, 10]
      • [-2, 5]
      • [-1, 5]
      • [10, 5]

    • 2.
      If \( \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0 \), \( |\overrightarrow{a}| = \sqrt{37} \), \( |\overrightarrow{b}| = 3 \), and \( |\overrightarrow{c}| = 4 \), then the angle between \( \overrightarrow{b} \) and \( \overrightarrow{c} \) is:

        • \( \frac{\pi}{6} \)
        • \( \frac{\pi}{4} \)
        • \( \frac{\pi}{3} \)
        • \( \frac{\pi}{2} \)

      • 3.
        Evaluate: $ \tan^{-1} \left[ 2 \sin \left( 2 \cos^{-1} \frac{\sqrt{3}}{2} \right) \right]$


          • 4.
            The integrating factor of the differential equation \( (x + 2y^3) \frac{dy}{dx} = 2y \) is:

              • \( e^{y^2} \)
              • \( \frac{1}{\sqrt{y}} \)
              • \( e^{-\frac{1}{y^2}} \)
              • \( e^{y^2} \)

            • 5.
              If \( \int \frac{1}{2x^2} \, dx = k \cdot 2x + C \), then \( k \) is equal to:

                • \( -1 \)
                • \( \log 2 \)
                • \( -\log 2 \)
                • \( 1/2 \)

              • 6.
                If \[ \begin{bmatrix} 4 + x & x - 1 \\ -2 & 3 \end{bmatrix} \] is a singular matrix, then the value of \( x \) is:

                  • 0
                  • 1
                  • -2
                  • -4
                CBSE CLASS XII Previous Year Papers

                Comments


                No Comments To Show