UP Board Class 12 Mathematics Question Paper with Answer Key Code 324 AY is available for download. The exam was conducted by the Uttar Pradesh Madhyamik Shiksha Parishad (UPMSP) on February 27, 2023 in Afternoon Session 2 PM to 5:15 PM. The medium of paper was English and Hindi. In terms of difficulty level, UP Board Class 12 Mathematics paper was Easy. The question paper comprised a total of 9 questions.
UP Board Class 12 Mathematics (Code 324 AY) Question Paper with Solutions PDF
UP Board Class 12 Mathematics Question Paper with Answer Key | ![]() |
Check Solutions |

If \(y = 4t\) and \(x = \dfrac{4}{t}\), then the value of \(\dfrac{dy}{dx}\) will be:
View Solution
Step 1: Differentiate \(y\) with respect to \(t\).
\[ y = 4t \quad \Rightarrow \quad \frac{dy}{dt} = 4 \]
Step 2: Differentiate \(x\) with respect to \(t\).
\[ x = \frac{4}{t} \quad \Rightarrow \quad \frac{dx}{dt} = -\frac{4}{t^{2}} \]
Step 3: Apply the chain rule.
\[ \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{4}{-\frac{4}{t^{2}}} = -t^{2} \]
Step 4: Conclusion.
The correct answer is (A) \(-t^{2}\).
Quick Tip: When \(y\) and \(x\) are given in terms of a parameter \(t\), use \(\dfrac{dy}{dx} = \dfrac{dy/dt}{dx/dt}\).
If \(A = \begin{bmatrix} 0 & 1
1 & 0 \end{bmatrix}\) and \(B = \begin{bmatrix} 1 & 0
0 & -1 \end{bmatrix}\), then \(BA\) will be:
1 & 0 \end{bmatrix}\)
View Solution
Step 1: Write the given matrices.
\[ A = \begin{bmatrix} 0 & 1
1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0
0 & -1 \end{bmatrix} \]
Step 2: Compute \(BA\).
\[ BA = \begin{bmatrix} 1 & 0
0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1
1 & 0 \end{bmatrix} \]
Performing multiplication: \[ BA = \begin{bmatrix} (1 \cdot 0 + 0 \cdot 1) & (1 \cdot 1 + 0 \cdot 0)
(0 \cdot 0 + (-1) \cdot 1) & (0 \cdot 1 + (-1) \cdot 0) \end{bmatrix} = \begin{bmatrix} 0 & 1
-1 & 0 \end{bmatrix} \]
Step 3: Compare with given options.
This matches option (B).
Step 4: Conclusion.
The correct answer is (B) \(\begin{bmatrix} 0 & -1
1 & 0 \end{bmatrix}\).
Quick Tip: Always check the order when multiplying matrices: \(BA \neq AB\) in general.
The slope of the normal to the curve \(y = 2x^{2} + 3\sin x\) at \(x = 0\) will be:
View Solution
Step 1: Differentiate the curve.
Given: \[ y = 2x^{2} + 3\sin x \]
Differentiate with respect to \(x\): \[ \frac{dy}{dx} = 4x + 3\cos x \]
Step 2: Find slope of tangent at \(x=0\).
\[ \frac{dy}{dx}\Big|_{x=0} = 4(0) + 3\cos(0) = 3 \]
So, slope of tangent at \(x=0\) is \(3\).
Step 3: Find slope of normal.
The slope of the normal is the negative reciprocal of the slope of the tangent. \[ m_{normal} = -\frac{1}{m_{tangent}} = -\frac{1}{3} \]
Step 4: Match with options.
The correct answer is option (C) \(-\dfrac{1}{3}\).
Quick Tip: The slope of the normal to a curve at a point is the negative reciprocal of the slope of the tangent at that point.
The value of \(\int_{1}^{\sqrt{3}} \dfrac{dx}{1+x^{2}}\) will be:
View Solution
Step 1: Recall the standard integral.
\[ \int \frac{dx}{1+x^{2}} = \tan^{-1}x + C \]
Step 2: Apply limits.
\[ \int_{1}^{\sqrt{3}} \frac{dx}{1+x^{2}} = \left[ \tan^{-1}x \right]_{1}^{\sqrt{3}} \]
\[ = \tan^{-1}(\sqrt{3}) - \tan^{-1}(1) \]
Step 3: Simplify.
\[ \tan^{-1}(\sqrt{3}) = \frac{\pi}{3}, \quad \tan^{-1}(1) = \frac{\pi}{4} \]
\[ \therefore \int_{1}^{\sqrt{3}} \frac{dx}{1+x^{2}} = \frac{\pi}{3} - \frac{\pi}{4} = \frac{4\pi - 3\pi}{12} = \frac{\pi}{12} \]
Step 4: Conclusion.
The correct answer is (B) \(\dfrac{\pi}{12}\).
Quick Tip: Always remember \(\int \dfrac{dx}{1+x^{2}} = \tan^{-1}x + C\) and use trigonometric values of \(\tan^{-1}(1)\) and \(\tan^{-1}(\sqrt{3})\).
The modulus function \(f: \mathbb{R} \to \mathbb{R}^{+}\) given by \(f(x) = |x|\) will be:
View Solution
Step 1: Understanding the modulus function.
The modulus function \(f(x) = |x|\) maps every real number \(x\) to a non-negative real number. Its codomain is \(\mathbb{R}^{+}\) (non-negative real numbers).
Step 2: Check one-one property.
If \(f(a) = f(b)\), then \(|a| = |b|\). This means either \(a = b\) or \(a = -b\).
Thus, different inputs (e.g., \(2\) and \(-2\)) give the same output. Hence, \(f(x)\) is **not one-one**, but **many-one**.
Step 3: Check onto property.
For every \(y \in \mathbb{R}^{+}\), there exists an \(x \in \mathbb{R}\) such that \(f(x) = |x| = y\).
Thus, the function is **onto** \(\mathbb{R}^{+}\).
Step 4: Conclusion.
The function is **many-one and onto**, so the correct answer is (B).
Quick Tip: The modulus function \(f(x) = |x|\) is many-one because \(f(a) = f(-a)\), and it is onto \(\mathbb{R}^{+}\) since every non-negative real number has a preimage.
Evaluate: \(\int x^{2}\sin(x^{3})\,dx\)
View Solution
Step 1: Substitution.
Let \(t = x^{3} \implies dt = 3x^{2}dx \implies x^{2}dx = \dfrac{dt}{3}\).
Step 2: Transform the integral. \[ \int x^{2}\sin(x^{3})\,dx = \int \sin(t)\,\dfrac{dt}{3} \]
Step 3: Solve. \[ = \dfrac{1}{3}\int \sin(t)\,dt = -\dfrac{1}{3}\cos(t) + C \]
Step 4: Back-substitution. \[ = -\dfrac{1}{3}\cos(x^{3}) + C \]
Final Answer: \[ \boxed{-\dfrac{1}{3}\cos(x^{3}) + C} \] Quick Tip: Always check if the derivative of the inner function exists in the integrand when using substitution.
If the vectors \(2\hat{i} + \hat{j} - a\hat{k}\) and \(\hat{i} + 4\hat{j} + \hat{k}\) are perpendicular, find the value of \(a\).
View Solution
Step 1: Recall condition for perpendicular vectors.
Two vectors \(\vec{u}\) and \(\vec{v}\) are perpendicular if: \[ \vec{u}\cdot \vec{v} = 0 \]
Step 2: Write the given vectors. \[ \vec{u} = 2\hat{i} + \hat{j} - a\hat{k}, \quad \vec{v} = \hat{i} + 4\hat{j} + \hat{k} \]
Step 3: Take the dot product. \[ \vec{u}\cdot \vec{v} = (2)(1) + (1)(4) + (-a)(1) \] \[ = 2 + 4 - a = 6 - a \]
Step 4: Apply perpendicular condition. \[ 6 - a = 0 \implies a = 6 \]
Final Answer: \[ \boxed{a = 6} \] Quick Tip: For perpendicular vectors → always use \(\vec{u}\cdot \vec{v} = 0\).
Solve \(\dfrac{dy}{dx} = \dfrac{x + e^x}{y}\).
View Solution
Step 1: Rearranging.
We have: \[ \frac{dy}{dx} = \frac{x + e^x}{y} \]
Multiply both sides by \(y\): \[ y \frac{dy}{dx} = x + e^x \]
Step 2: Recognizing derivative form.
This suggests: \[ \frac{d}{dx}\left( \frac{y^2}{2} \right) = x + e^x \]
Step 3: Integration.
Integrating both sides w.r.t. \(x\): \[ \frac{y^2}{2} = \int (x + e^x) \, dx \]
\[ \frac{y^2}{2} = \frac{x^2}{2} + e^x + C \]
Step 4: Simplify.
\[ y^2 = x^2 + 2e^x + C' \]
Final Answer: \[ \boxed{y^2 = x^2 + 2e^x + C} \] Quick Tip: Always try to rewrite differential equations in recognizable derivative forms for easier integration.
If \(\sin^{-1}\left(\dfrac{1}{2}\right) = \tan^{-1}x\), find the value of \(x\).
View Solution
Step 1: Simplify the inverse sine.
\[ \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6} \]
So, \[ \tan^{-1}x = \frac{\pi}{6} \]
Step 2: Apply tangent function.
Taking tangent on both sides: \[ x = \tan\left(\frac{\pi}{6}\right) \]
\[ x = \frac{1}{\sqrt{3}} \]
Final Answer: \[ \boxed{\dfrac{1}{\sqrt{3}}} \] Quick Tip: Use standard values of trigonometric functions: \(\sin^{-1}\left(\tfrac{1}{2}\right) = \tfrac{\pi}{6}\), \(\cos^{-1}\left(\tfrac{1}{2}\right) = \tfrac{\pi}{3}\), etc.
If \(A = \begin{bmatrix} 2 & 4
3 & 2 \end{bmatrix}\) and \(B = \begin{bmatrix} 1 & 3
-2 & 5 \end{bmatrix}\), then find the value of \((A + B)\) and \((A - B)\).
View Solution
We are given two matrices: \[ A = \begin{bmatrix} 2 & 4
3 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 3
-2 & 5 \end{bmatrix} \]
Step 1: Find \((A + B)\). \[ A + B = \begin{bmatrix} 2 & 4
3 & 2 \end{bmatrix} + \begin{bmatrix} 1 & 3
-2 & 5 \end{bmatrix} = \begin{bmatrix} (2+1) & (4+3)
(3+(-2)) & (2+5) \end{bmatrix} = \begin{bmatrix} 3 & 7
1 & 7 \end{bmatrix} \]
Step 2: Find \((A - B)\). \[ A - B = \begin{bmatrix} 2 & 4
3 & 2 \end{bmatrix} - \begin{bmatrix} 1 & 3
-2 & 5 \end{bmatrix} = \begin{bmatrix} (2-1) & (4-3)
(3-(-2)) & (2-5) \end{bmatrix} = \begin{bmatrix} 1 & 1
5 & -3 \end{bmatrix} \]
Final Answer: \[ A + B = \begin{bmatrix} 3 & 7
1 & 7 \end{bmatrix}, \quad A - B = \begin{bmatrix} 1 & 1
5 & -3 \end{bmatrix} \] Quick Tip: Matrix addition and subtraction are performed by adding or subtracting corresponding elements of the two matrices.
If \(y = A\cos\theta + B\sin\theta\), then prove that \(\dfrac{d^{2}y}{d\theta^{2}} = -y\).
View Solution
Step 1: Differentiate once. \[ y = A\cos\theta + B\sin\theta \] \[ \dfrac{dy}{d\theta} = -A\sin\theta + B\cos\theta \]
Step 2: Differentiate again. \[ \dfrac{d^{2}y}{d\theta^{2}} = -A\cos\theta - B\sin\theta \]
Step 3: Compare with original function. \[ \dfrac{d^{2}y}{d\theta^{2}} = -(A\cos\theta + B\sin\theta) = -y \]
Final Answer: \[ \boxed{\dfrac{d^{2}y}{d\theta^{2}} = -y} \] Quick Tip: Trigonometric functions \(\sin\theta\) and \(\cos\theta\) always satisfy the differential equation \(y'' + y = 0\).
Solve the inequality \(3x + 4y \leq 12\), \(4x + 3y \leq 12\), \(x \geq 0\), \(y \geq 0\) by graphical method.
View Solution
We have the system of inequalities: \[ 3x + 4y \leq 12, \quad 4x + 3y \leq 12, \quad x \geq 0, \quad y \geq 0 \]
Step 1: Convert inequalities into equations. \[ 3x + 4y = 12 \quad (1) \] \[ 4x + 3y = 12 \quad (2) \]
Step 2: Find intercepts.
For (1):
- If \(x=0 \implies y = 3\)
- If \(y=0 \implies x = 4\)
For (2):
- If \(x=0 \implies y = 4\)
- If \(y=0 \implies x = 3\)
Step 3: Plot lines and shade feasible region.
- Line (1): passes through \((0,3)\) and \((4,0)\).
- Line (2): passes through \((0,4)\) and \((3,0)\).
- Feasible region lies in the first quadrant bounded by these lines and coordinate axes.
Step 4: Find corner points of feasible region.
By solving (1) and (2): \[ 3x + 4y = 12, \quad 4x + 3y = 12 \]
Multiply first by 3: \(9x + 12y = 36\)
Multiply second by 4: \(16x + 12y = 48\)
Subtract: \(7x = 12 \implies x = \dfrac{12}{7}\)
Substitute in (1): \[ 3\left(\dfrac{12}{7}\right) + 4y = 12 \implies \dfrac{36}{7} + 4y = 12 \] \[ 4y = \dfrac{84 - 36}{7} = \dfrac{48}{7} \implies y = \dfrac{12}{7} \]
So, point of intersection is \(\left(\dfrac{12}{7}, \dfrac{12}{7}\right)\).
Step 5: Vertices of feasible region. \[ (0,0), \; (4,0), \; (0,4), \; \left(\dfrac{12}{7}, \dfrac{12}{7}\right) \]
Conclusion:
The shaded feasible region is the quadrilateral formed by these points in the first quadrant.
Final Answer:
Feasible region vertices are \[ \boxed{(0,0), \; (4,0), \; (0,4), \; \left(\dfrac{12}{7}, \dfrac{12}{7}\right)} \] Quick Tip: In graphical inequalities → always test intercepts, plot boundary lines, and then shade the common feasible region.
Prove that \[ \begin{vmatrix} a+b+2c & a & b
c & b+c+2a & b
c & a & c+a+2b \end{vmatrix} = 2(a+b+c)^3 \]
View Solution
Step 1: Expand determinant.
Let \[ \Delta = \begin{vmatrix} a+b+2c & a & b
c & b+c+2a & b
c & a & c+a+2b \end{vmatrix} \]
Step 2: Apply column transformation.
Perform \(C_1 \to C_1 + C_2 + C_3\): \[ \Delta = \begin{vmatrix} (a+b+2c)+a+b & a & b
c+(b+c+2a)+b & b+c+2a & b
c+a+(c+a+2b) & a & c+a+2b \end{vmatrix} \]
\[ \Delta = \begin{vmatrix} 2(a+b+c) & a & b
2(a+b+c) & b+c+2a & b
2(a+b+c) & a & c+a+2b \end{vmatrix} \]
Step 3: Factor common term.
Take \(2(a+b+c)\) common from \(C_1\): \[ \Delta = 2(a+b+c) \begin{vmatrix} 1 & a & b
1 & b+c+2a & b
1 & a & c+a+2b \end{vmatrix} \]
Step 4: Expand determinant.
Apply \(R_2 \to R_2 - R_1\), \(R_3 \to R_3 - R_1\): \[ = 2(a+b+c) \begin{vmatrix} 1 & a & b
0 & b+c+a & 0
0 & 0 & c+a+b \end{vmatrix} \]
Step 5: Simplify.
\[ = 2(a+b+c)\big[(b+c+a)(c+a+b)\big] \]
\[ = 2(a+b+c)(a+b+c)(a+b+c) \]
\[ = 2(a+b+c)^3 \]
Final Answer: \[ \boxed{\Delta = 2(a+b+c)^3} \] Quick Tip: Column/row transformations often simplify determinants to triangular form.
If \(A\) and \(B\) are two non-singular square matrices of order \(n\), then prove that \[ (AB)^{-1} = B^{-1}A^{-1} \]
View Solution
Step 1: Recall definition.
For any non-singular matrix \(M\), \[ M \cdot M^{-1} = I \]
Step 2: Take \(M = AB\).
\[ (AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} \]
\[ = AIA^{-1} \]
\[ = AA^{-1} = I \]
Step 3: Conclude.
Since \((AB)(B^{-1}A^{-1}) = I\), it follows that \[ (AB)^{-1} = B^{-1}A^{-1} \]
Final Answer: \[ \boxed{(AB)^{-1} = B^{-1}A^{-1}} \] Quick Tip: Note: The order of multiplication reverses when taking the inverse of product of matrices.
Find the equation of tangent at \(t = \dfrac{\pi}{2}\) on the curve \(x = a \sin^{3}t\), \(y = b \cos^{3}t\).
View Solution
We are given the parametric equations: \[ x = a \sin^{3}t, \quad y = b \cos^{3}t \]
Step 1: Differentiate \(x\) and \(y\) with respect to \(t\). \[ \frac{dx}{dt} = 3a \sin^{2}t \cos t, \quad \frac{dy}{dt} = -3b \cos^{2}t \sin t \]
Step 2: Find slope of tangent. \[ \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{-3b \cos^{2}t \sin t}{3a \sin^{2}t \cos t} = -\frac{b \cos t}{a \sin t} \]
Step 3: At \(t = \dfrac{\pi}{2}\). \[ x = a \sin^{3}\left(\frac{\pi}{2}\right) = a(1)^{3} = a \] \[ y = b \cos^{3}\left(\frac{\pi}{2}\right) = b(0)^{3} = 0 \] \[ \frac{dy}{dx} = -\frac{b \cos(\pi/2)}{a \sin(\pi/2)} = -\frac{b \cdot 0}{a \cdot 1} = 0 \]
Step 4: Equation of tangent.
Point: \((a, 0)\), slope \(m = 0\).
Equation: \[ y - 0 = 0 \cdot (x - a) \quad \Rightarrow \quad y = 0 \]
Final Answer: \[ \boxed{y = 0} \] Quick Tip: For parametric curves, slope of tangent = \(\dfrac{dy}{dx} = \dfrac{dy/dt}{dx/dt}\).
One die is thrown two times. If the sum of the appeared numbers on their faces is 6, find the conditional probability of appearing number 4 at least one time in that.
View Solution
Step 1: Total possible outcomes.
When two dice are thrown, total outcomes = \(36\).
Given condition: sum of numbers = 6.
Step 2: Outcomes where sum = 6. \[ (1,5), (2,4), (3,3), (4,2), (5,1) \]
So, total favourable cases for sum = 6 → \(5\).
Step 3: Outcomes where at least one 4 appears (within sum = 6). \[ (2,4), (4,2) \]
So, number of favourable outcomes = \(2\).
Step 4: Conditional probability. \[ P(at least one 4 \mid sum = 6) = \frac{Favourable outcomes}{Total outcomes with sum = 6} = \frac{2}{5} \]
Final Answer: \[ \boxed{\dfrac{2}{5}} \] Quick Tip: Conditional Probability = \(\dfrac{n(Favourable outcomes satisfying condition)}{n(Total outcomes under given condition)}\).
Find the vector equation of the line \(\dfrac{x+3}{2} = \dfrac{y-5}{4} = \dfrac{z+6}{2}\).
View Solution
Step 1: Compare with symmetric form.
A line in symmetric form is: \[ \frac{x-x_{1}}{a} = \frac{y-y_{1}}{b} = \frac{z-z_{1}}{c} \]
Here, \[ \frac{x+3}{2} = \frac{y-5}{4} = \frac{z+6}{2} \]
So, \[ (x_{1}, y_{1}, z_{1}) = (-3, 5, -6), \quad \vec{d} = (2, 4, 2) \]
Step 2: Write vector equation of line.
General form: \[ \vec{r} = \vec{a} + \lambda \vec{d} \]
where \(\vec{a}\) is position vector of a point, \(\vec{d}\) is direction vector.
Step 3: Substitute values. \[ \vec{a} = -3\hat{i} + 5\hat{j} - 6\hat{k}, \quad \vec{d} = 2\hat{i} + 4\hat{j} + 2\hat{k} \]
So, \[ \vec{r} = (-3\hat{i} + 5\hat{j} - 6\hat{k}) + \lambda(2\hat{i} + 4\hat{j} + 2\hat{k}) \]
Final Answer: \[ \boxed{\vec{r} = (-3\hat{i} + 5\hat{j} - 6\hat{k}) + \lambda(2\hat{i} + 4\hat{j} + 2\hat{k})} \] Quick Tip: Vector equation of a line: \(\vec{r} = \vec{a} + \lambda \vec{d}\), where \(\vec{a}\) is a point and \(\vec{d}\) is direction vector.
Solve the differential equation \(\log\left(\dfrac{dy}{dx}\right) = 3x + 4y\).
View Solution
Step 1: Rewrite equation. \[ \log\left(\dfrac{dy}{dx}\right) = 3x + 4y \]
Take exponential both sides: \[ \dfrac{dy}{dx} = e^{3x + 4y} \]
Step 2: Separate variables. \[ e^{-4y} dy = e^{3x} dx \]
Step 3: Integrate both sides. \[ \int e^{-4y} dy = \int e^{3x} dx \]
\[ \dfrac{e^{-4y}}{-4} = \dfrac{e^{3x}}{3} + C \]
Step 4: Simplify. \[ e^{-4y} = -\dfrac{4}{3} e^{3x} + C' \]
(where \(C' = 4C\) is constant of integration).
Final Answer: \[ \boxed{e^{-4y} + \dfrac{4}{3}e^{3x} = C} \] Quick Tip: Always use separation of variables for equations of the form \(\dfrac{dy}{dx} = f(x)\,g(y)\).
Prove that the relation \(R = \{(a,b) \in \mathbb{Z} \times \mathbb{Z} \;|\; (a-b)\) is divisible by \(2\}\) is an equivalence relation.
View Solution
We need to prove that \(R\) is reflexive, symmetric, and transitive.
Step 1: Reflexivity.
For any \(a \in \mathbb{Z}\), we have \(a-a = 0\), which is divisible by \(2\).
So, \((a,a) \in R\). Hence, \(R\) is reflexive.
Step 2: Symmetry.
Suppose \((a,b) \in R\). Then, \((a-b)\) is divisible by \(2\).
So, \(a-b = 2k\) for some \(k \in \mathbb{Z}\). \(\Rightarrow b-a = -2k\), which is also divisible by \(2\).
Thus, \((b,a) \in R\). Hence, \(R\) is symmetric.
Step 3: Transitivity.
Suppose \((a,b) \in R\) and \((b,c) \in R\).
Then, \(a-b = 2k_1\), and \(b-c = 2k_2\) for some integers \(k_1, k_2\).
Adding, \(a-c = (a-b) + (b-c) = 2k_1 + 2k_2 = 2(k_1+k_2)\).
Thus, \(a-c\) is divisible by \(2\) \(\Rightarrow (a,c) \in R\).
Hence, \(R\) is transitive.
Step 4: Conclusion.
Since \(R\) is reflexive, symmetric, and transitive, \(R\) is an equivalence relation.
Final Answer: \[ \boxed{R is an equivalence relation.} \] Quick Tip: To prove equivalence relation: check reflexive, symmetric, and transitive properties.
If \(A = \begin{bmatrix} 2 & 3
1 & -4 \end{bmatrix}\) and \(B = \begin{bmatrix} 1 & -2
-1 & 3 \end{bmatrix}\), then prove that \((AB)^{-1} = B^{-1}A^{-1}\).
View Solution
Step 1: Compute \(AB\).
\[ AB = \begin{bmatrix} 2 & 3
1 & -4 \end{bmatrix} \begin{bmatrix} 1 & -2
-1 & 3 \end{bmatrix} = \begin{bmatrix} 2(1)+3(-1) & 2(-2)+3(3)
1(1)+(-4)(-1) & 1(-2)+(-4)(3) \end{bmatrix} \]
\[ AB = \begin{bmatrix} -1 & 5
5 & -14 \end{bmatrix} \]
Step 2: Find \((AB)^{-1}\).
For a \(2 \times 2\) matrix \(\begin{bmatrix} p & q
r & s \end{bmatrix}\), \[ M^{-1} = \frac{1}{ps-qr}\begin{bmatrix} s & -q
-r & p \end{bmatrix} \]
Here, \(\det(AB) = (-1)(-14) - (5)(5) = 14 - 25 = -11\).
\[ (AB)^{-1} = \frac{1}{-11} \begin{bmatrix} -14 & -5
-5 & -1 \end{bmatrix} = \frac{1}{11}\begin{bmatrix} 14 & 5
5 & 1 \end{bmatrix} \]
Step 3: Find \(A^{-1}\) and \(B^{-1}\).
For \(A = \begin{bmatrix} 2 & 3
1 & -4 \end{bmatrix}\), \(\det(A) = (2)(-4) - (3)(1) = -8 - 3 = -11\).
\[ A^{-1} = \frac{1}{-11} \begin{bmatrix} -4 & -3
-1 & 2 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 4 & 3
1 & -2 \end{bmatrix} \]
For \(B = \begin{bmatrix} 1 & -2
-1 & 3 \end{bmatrix}\), \(\det(B) = (1)(3) - (-2)(-1) = 3 - 2 = 1\).
\[ B^{-1} = \begin{bmatrix} 3 & 2
1 & 1 \end{bmatrix} \]
Step 4: Compute \(B^{-1}A^{-1}\).
\[ B^{-1}A^{-1} = \begin{bmatrix} 3 & 2
1 & 1 \end{bmatrix} \cdot \frac{1}{11}\begin{bmatrix} 4 & 3
1 & -2 \end{bmatrix} \]
\[ = \frac{1}{11}\begin{bmatrix} 3(4)+2(1) & 3(3)+2(-2)
1(4)+1(1) & 1(3)+1(-2) \end{bmatrix} \]
\[ = \frac{1}{11}\begin{bmatrix} 14 & 5
5 & 1 \end{bmatrix} \]
Step 5: Compare results.
\[ (AB)^{-1} = \frac{1}{11}\begin{bmatrix} 14 & 5
5 & 1 \end{bmatrix}, \quad B^{-1}A^{-1} = \frac{1}{11}\begin{bmatrix} 14 & 5
5 & 1 \end{bmatrix} \]
\[ \therefore (AB)^{-1} = B^{-1}A^{-1} \]
Final Answer: \[ \boxed{(AB)^{-1} = B^{-1}A^{-1}} \] Quick Tip: Always remember: inverse of product reverses the order → \((AB)^{-1} = B^{-1}A^{-1}\).
Differentiate \(y = (\cos x)^{\tan x} + x^{x}\).
View Solution
We have two terms: \(y = (\cos x)^{\tan x} + x^{x}\)
---
Part 1: Differentiate \((\cos x)^{\tan x}\)
Let \(u = (\cos x)^{\tan x}\) \[ \ln u = \tan x \cdot \ln(\cos x) \]
Differentiate w.r.t \(x\): \[ \frac{1}{u}\frac{du}{dx} = \sec^{2}x \cdot \ln(\cos x) + \tan x \cdot \frac{1}{\cos x}(-\sin x) \]
\[ \frac{1}{u}\frac{du}{dx} = \sec^{2}x \cdot \ln(\cos x) - \tan^{2}x \]
So, \[ \frac{du}{dx} = (\cos x)^{\tan x}\left(\sec^{2}x \cdot \ln(\cos x) - \tan^{2}x\right) \]
---
Part 2: Differentiate \(x^{x}\)
Let \(v = x^{x}\) \[ \ln v = x\ln x \]
Differentiate: \[ \frac{1}{v}\frac{dv}{dx} = \ln x + 1 \]
\[ \frac{dv}{dx} = x^{x}(\ln x + 1) \]
---
Final derivative: \[ \frac{dy}{dx} = (\cos x)^{\tan x}\left(\sec^{2}x \cdot \ln(\cos x) - \tan^{2}x\right) + x^{x}(\ln x + 1) \]
Final Answer: \[ \boxed{\dfrac{dy}{dx} = (\cos x)^{\tan x}\Big(\sec^{2}x \cdot \ln(\cos x) - \tan^{2}x\Big) + x^{x}(\ln x + 1)} \] Quick Tip: For \(f(x)^{g(x)}\), use \(\ln\) differentiation: \(\ln y = g(x)\ln f(x)\).
If the function \(f(x) = \begin{cases} ax+1 & x \leq 3
bx+3 & x > 3 \end{cases}\) is continuous at \(x = 3\), then find the values of \(a\) and \(b\).
View Solution
Condition for continuity at \(x=3\): \[ \lim_{x\to 3^-} f(x) = f(3) = \lim_{x\to 3^+} f(x) \]
Step 1: Left-hand limit (\(x \leq 3\)). \[ \lim_{x\to 3^-} f(x) = a(3) + 1 = 3a + 1 \]
Step 2: Value at \(x=3\).
Since \(x=3\) is included in first case: \[ f(3) = 3a + 1 \]
Step 3: Right-hand limit (\(x > 3\)). \[ \lim_{x\to 3^+} f(x) = b(3) + 3 = 3b + 3 \]
Step 4: Apply continuity condition. \[ 3a + 1 = 3b + 3 \]
\[ 3a - 3b = 2 \quad \implies \quad a - b = \tfrac{2}{3} \]
Conclusion:
The values of \(a\) and \(b\) are related by: \[ \boxed{a - b = \tfrac{2}{3}} \] Quick Tip: For piecewise functions → apply \(\lim_{x\to c^-} f(x) = \lim_{x\to c^+} f(x) = f(c)\) for continuity.
Find the interval in which the function \[ f(x) = 4x^3 - 6x^2 - 72x + 30 \]
is (i) increasing and (ii) decreasing.
View Solution
Step 1: Differentiate the function.
\[ f(x) = 4x^3 - 6x^2 - 72x + 30 \]
\[ f'(x) = 12x^2 - 12x - 72 \]
Step 2: Simplify derivative.
\[ f'(x) = 12(x^2 - x - 6) = 12(x-3)(x+2) \]
Step 3: Critical points.
Set \(f'(x) = 0\): \[ 12(x-3)(x+2) = 0 \quad \Rightarrow \quad x = 3, \; x = -2 \]
Step 4: Sign analysis of \(f'(x)\).
Check intervals \((-\infty,-2)\), \((-2,3)\), and \((3,\infty)\):
For \(x < -2\): Choose \(x = -3\), then \((x-3)(x+2) = (-6)(-1) = +6 > 0\).
\(\Rightarrow f'(x) > 0\) → Increasing.
For \(-2 < x < 3\): Choose \(x = 0\), then \((x-3)(x+2) = (-3)(2) = -6 < 0\).
\(\Rightarrow f'(x) < 0\) → Decreasing.
For \(x > 3\): Choose \(x = 4\), then \((x-3)(x+2) = (1)(6) = +6 > 0\).
\(\Rightarrow f'(x) > 0\) → Increasing.
Step 5: Conclusion.
Function is increasing in intervals \((-\infty, -2)\) and \((3, \infty)\).
Function is decreasing in interval \((-2, 3)\).
Final Answer: \[ \boxed{Increasing in (-\infty, -2) \cup (3,\infty), \quad Decreasing in (-2,3)} \] Quick Tip: Use first derivative test: \(f'(x) > 0\) → Increasing, \(f'(x) < 0\) → Decreasing.
Solve the differential equation \((\tan^{-1}y - x)dy = (1+y^{2})dx\).
View Solution
We have: \[ (\tan^{-1}y - x)dy = (1+y^{2})dx \]
Step 1: Rearrange. \[ \frac{dy}{dx} = \frac{1+y^{2}}{\tan^{-1}y - x} \]
Step 2: Substitution.
Let \(z = \tan^{-1}y \implies \frac{dz}{dy} = \frac{1}{1+y^{2}} \implies dy = (1+y^{2})dz\)
Step 3: Rewrite.
Substitute into original equation: \[ (z - x)(1+y^{2})dz = (1+y^{2})dx \]
Cancel \((1+y^{2})\): \[ (z - x)dz = dx \]
Step 4: Rearrange terms. \[ \frac{dx}{dz} + x = z \]
Step 5: Solve linear ODE.
This is linear in \(x\): \[ \frac{dx}{dz} + x = z \]
Integrating factor: \(e^{\int 1dz} = e^{z}\)
\[ \frac{d}{dz}(xe^{z}) = ze^{z} \]
Step 6: Integrate. \[ xe^{z} = \int ze^{z}dz \]
Integration by parts: \[ \int ze^{z}dz = (z-1)e^{z} + C \]
So, \[ xe^{z} = (z-1)e^{z} + C \]
\[ x = z - 1 + Ce^{-z} \]
Step 7: Back substitution. \(z = \tan^{-1}y\)
\[ \boxed{x = \tan^{-1}y - 1 + Ce^{-\tan^{-1}y}} \] Quick Tip: When \(\arctan y\) appears, use substitution \(z = \tan^{-1}y\) to simplify.
Find the shortest distance between the lines \[ \vec{r} = \hat{i} + 2\hat{j} - 4\hat{k} + \lambda(2\hat{i} + 3\hat{j} + 6\hat{k}) \] \[ \vec{r} = 3\hat{i} + 3\hat{j} - 5\hat{k} + \mu(2\hat{i} + 3\hat{j} + 6\hat{k}) \]
View Solution
Step 1: Write in standard form.
First line passes through \(A(1,2,-4)\), direction vector \(\vec{d} = (2,3,6)\).
Second line passes through \(B(3,3,-5)\), direction vector \(\vec{d} = (2,3,6)\).
Step 2: Check relation of lines.
Since both lines have the same direction vector \((2,3,6)\), they are parallel.
Step 3: Formula for shortest distance between parallel lines. \[ d = \frac{|\overrightarrow{AB} \times \vec{d}|}{|\vec{d}|} \]
Step 4: Find \(\overrightarrow{AB}\). \[ \overrightarrow{AB} = (3-1,\,3-2,\,-5-(-4)) = (2,1,-1) \]
Step 5: Compute cross product. \[ \overrightarrow{AB} \times \vec{d} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k}
2 & 1 & -1
2 & 3 & 6 \end{vmatrix} \]
\[ = \hat{i}(1\cdot 6 - (-1)\cdot 3) - \hat{j}(2\cdot 6 - (-1)\cdot 2) + \hat{k}(2\cdot 3 - 1\cdot 2) \]
\[ = \hat{i}(6+3) - \hat{j}(12+2) + \hat{k}(6-2) \]
\[ = 9\hat{i} - 14\hat{j} + 4\hat{k} \]
Step 6: Magnitudes. \[ |\overrightarrow{AB} \times \vec{d}| = \sqrt{9^{2} + (-14)^{2} + 4^{2}} = \sqrt{81+196+16} = \sqrt{293} \]
\[ |\vec{d}| = \sqrt{2^{2}+3^{2}+6^{2}} = \sqrt{4+9+36} = \sqrt{49} = 7 \]
Step 7: Distance. \[ d = \frac{\sqrt{293}}{7} \]
Final Answer: \[ \boxed{d = \dfrac{\sqrt{293}}{7}} \] Quick Tip: For parallel lines, use \(d = \dfrac{|\overrightarrow{AB}\times \vec{d}|}{|\vec{d}|}\).
If a die is thrown three times, then find the probability of getting at least one appearing number odd.
View Solution
Step 1: Define the experiment.
A die is thrown three times. Each throw has \(6\) possible outcomes.
Total number of outcomes: \[ n(S) = 6^3 = 216 \]
Step 2: Use complementary probability.
We want the probability of at least one odd number. \[ P(at least one odd) = 1 - P(no odd) \]
Step 3: Probability of no odd number.
Odd numbers on a die: \(\{1,3,5\}\) (3 outcomes).
Even numbers on a die: \(\{2,4,6\}\) (3 outcomes).
Probability of even in one throw = \(\dfrac{3}{6} = \dfrac{1}{2}\).
For three throws, probability of all even = \[ \left(\frac{1}{2}\right)^3 = \frac{1}{8} \]
Step 4: Final probability.
\[ P(at least one odd) = 1 - \frac{1}{8} = \frac{7}{8} \]
Final Answer: \[ \boxed{\dfrac{7}{8}} \] Quick Tip: In probability problems involving "at least one", it is easier to use the complement rule: \(P(at least one) = 1 - P(none)\).
Find the area included between the circle \(x^{2} + y^{2} = 8x\), parabola \(y^{2} = 4x\) and upper part of \(x\)-axis.
View Solution
Step 1: Rewrite the equations. \[ Circle: x^{2} + y^{2} = 8x \quad \Rightarrow \quad (x-4)^{2} + y^{2} = 16 \]
This is a circle with centre \((4,0)\) and radius \(4\).
\[ Parabola: y^{2} = 4x \quad \Rightarrow \quad x = \frac{y^{2}}{4} \]
Step 2: Points of intersection.
Substitute \(x = \frac{y^{2}}{4}\) in circle equation: \[ \left(\frac{y^{2}}{4}\right)^{2} + y^{2} = 8\left(\frac{y^{2}}{4}\right) \] \[ \frac{y^{4}}{16} + y^{2} = 2y^{2} \quad \Rightarrow \quad \frac{y^{4}}{16} = y^{2} \] \[ y^{2}\left(\frac{y^{2}}{16} - 1\right) = 0 \quad \Rightarrow \quad y = 0, \; y = \pm 4 \]
On \(x\)-axis, \(y=0 \Rightarrow x=0\). For \(y=4\), \(x = \frac{16}{4} = 4\).
So, points of intersection: \((0,0)\) and \((4,4)\).
Step 3: Required area.
We want area bounded by parabola, circle, and \(x\)-axis above.
In terms of \(y\): \[ Parabola: x = \frac{y^{2}}{4}, \quad Circle: x = 4 + \sqrt{16 - y^{2}} \]
Thus, area is: \[ A = \int_{0}^{4} \left[ \big(4 + \sqrt{16 - y^{2}}\big) - \frac{y^{2}}{4} \right] dy \]
Step 4: Solve integration. \[ A = \int_{0}^{4} \left(4 - \frac{y^{2}}{4}\right) dy + \int_{0}^{4} \sqrt{16 - y^{2}} \, dy \]
First part: \[ \int_{0}^{4} \left(4 - \frac{y^{2}}{4}\right) dy = \left[4y - \frac{y^{3}}{12}\right]_{0}^{4} = 16 - \frac{64}{12} = 16 - \frac{16}{3} = \frac{32}{3} \]
Second part: \[ \int_{0}^{4} \sqrt{16 - y^{2}} \, dy \]
This represents a quarter circle of radius \(4\), so area = \(\frac{1}{4} \pi r^{2} = 4\pi\).
Total Area: \[ A = \frac{32}{3} + 4\pi \]
Final Answer: \[ \boxed{\; \dfrac{32}{3} + 4\pi \;} \] Quick Tip: For area bounded by two curves, always take \(\int (x_{right} - x_{left}) dy\).
Evaluate \(\displaystyle \int \left[\log(\log x) + \frac{1}{(\log x)^{2}}\right] dx\).
View Solution
Step 1: Separate the integral. \[ I = \int \log(\log x) \, dx + \int \frac{1}{(\log x)^{2}} \, dx \]
Step 2: Substitution.
Let \(t = \log x \;\Rightarrow\; dx = e^{t} dt = x dt\).
\[ I = \int \log t \cdot e^{t} dt + \int \frac{e^{t}}{t^{2}} dt \]
Step 3: First integral by parts. \[ \int e^{t} \log t \, dt = e^{t} \log t - \int \frac{e^{t}}{t} dt \]
Step 4: Combine both integrals. \[ I = e^{t} \log t - \int \frac{e^{t}}{t} dt + \int \frac{e^{t}}{t^{2}} dt \]
Notice that: \[ \frac{d}{dt}\left(-\frac{e^{t}}{t}\right) = -\frac{e^{t}}{t} + \frac{e^{t}}{t^{2}} \]
So, \[ - \int \frac{e^{t}}{t} dt + \int \frac{e^{t}}{t^{2}} dt = -\frac{e^{t}}{t} \]
Step 5: Final result. \[ I = e^{t} \log t - \frac{e^{t}}{t} + C \]
Back substitute \(t = \log x\): \[ I = x \log(\log x) - \frac{x}{\log x} + C \]
Final Answer: \[ \boxed{\; x \log(\log x) - \dfrac{x}{\log x} + C \;} \] Quick Tip: When you see \(\log(\log x)\) or \(\dfrac{1}{(\log x)^{2}}\), always try substitution \(t = \log x\).
Prove that the matrix \[ A = \begin{bmatrix} 2 & 3
1 & 2 \end{bmatrix} \]
satisfies the equation \[ A^{2} - 4A + I_{2} = 0, \]
where \(I_{2}\) is the \(2 \times 2\) identity matrix and \(0\) is the \(2 \times 2\) zero matrix. Also, find \(A^{-1}\) with the help of this.
View Solution
Step 1: Compute \(A^{2}\). \[ A^{2} = \begin{bmatrix} 2 & 3
1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3
1 & 2 \end{bmatrix} = \begin{bmatrix} 4+3 & 6+6
2+2 & 3+4 \end{bmatrix} = \begin{bmatrix} 7 & 12
4 & 7 \end{bmatrix} \]
Step 2: Compute \(A^{2} - 4A + I_{2}\). \[ A^{2} - 4A + I_{2} = \begin{bmatrix} 7 & 12
4 & 7 \end{bmatrix} - 4 \begin{bmatrix} 2 & 3
1 & 2 \end{bmatrix} + \begin{bmatrix} 1 & 0
0 & 1 \end{bmatrix} \]
\[ = \begin{bmatrix} 7 & 12
4 & 7 \end{bmatrix} - \begin{bmatrix} 8 & 12
4 & 8 \end{bmatrix} + \begin{bmatrix} 1 & 0
0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0
0 & 0 \end{bmatrix} \]
Hence proved. ✅
Step 3: Find \(A^{-1}\).
From Cayley-Hamilton theorem: \[ A^{2} - 4A + I = 0 \]
\[ \implies A^{2} - 4A = -I \]
\[ \implies A(A - 4I) = -I \]
\[ \implies A^{-1} = -(A - 4I) \]
\[ = -\left(\begin{bmatrix} 2 & 3
1 & 2 \end{bmatrix} - \begin{bmatrix} 4 & 0
0 & 4 \end{bmatrix}\right) = -\begin{bmatrix} -2 & 3
1 & -2 \end{bmatrix} = \begin{bmatrix} 2 & -3
-1 & 2 \end{bmatrix} \]
Final Answer: \[ \boxed{A^{-1} = \begin{bmatrix} 2 & -3
-1 & 2 \end{bmatrix}} \] Quick Tip: Cayley-Hamilton theorem provides a direct method to compute \(A^{-1}\) without using the adjoint and determinant.
Solve the system of equations by matrix method: \[ 3x - 2y + 3z = 8,\quad 2x + y - z = 1,\quad 4x - 3y + 2z = 4 \]
View Solution
Step 1: Write system in matrix form. \[ AX = B \]
where \[ A = \begin{bmatrix} 3 & -2 & 3
2 & 1 & -1
4 & -3 & 2 \end{bmatrix},\quad X = \begin{bmatrix} x
y
z \end{bmatrix},\quad B = \begin{bmatrix} 8
1
4 \end{bmatrix} \]
Step 2: Solve using inverse method. \[ X = A^{-1}B \]
Step 3: Find \(\det(A)\). \[ \det(A) = 3\begin{vmatrix} 1 & -1
-3 & 2 \end{vmatrix} - (-2)\begin{vmatrix} 2 & -1
4 & 2 \end{vmatrix} + 3\begin{vmatrix} 2 & 1
4 & -3 \end{vmatrix} \]
\[ = 3(1\cdot 2 - (-1)(-3)) + 2(2\cdot 2 - (-1)(4)) + 3(2(-3)-1(4)) \]
\[ = 3(2-3) + 2(4+4) + 3(-6-4) = 3(-1) + 16 + (-30) = -17 \]
So, \(\det(A) \neq 0\), hence solution exists.
Step 4: Use Cramer’s Rule.
\[ x = \frac{\det(A_{1})}{\det(A)},\quad y = \frac{\det(A_{2})}{\det(A)},\quad z = \frac{\det(A_{3})}{\det(A)} \]
- Replace first column of \(A\) with \(B\) for \(A_{1}\): \[ A_{1} = \begin{bmatrix} 8 & -2 & 3
1 & 1 & -1
4 & -3 & 2 \end{bmatrix},\quad \det(A_{1}) = 17 \]
- Replace second column of \(A\) with \(B\) for \(A_{2}\): \[ A_{2} = \begin{bmatrix} 3 & 8 & 3
2 & 1 & -1
4 & 4 & 2 \end{bmatrix},\quad \det(A_{2}) = -34 \]
- Replace third column of \(A\) with \(B\) for \(A_{3}\): \[ A_{3} = \begin{bmatrix} 3 & -2 & 8
2 & 1 & 1
4 & -3 & 4 \end{bmatrix},\quad \det(A_{3}) = -51 \]
Step 5: Compute values. \[ x = \frac{17}{-17} = -1,\quad y = \frac{-34}{-17} = 2,\quad z = \frac{-51}{-17} = 3 \]
Final Answer: \[ \boxed{x = -1,\; y = 2,\; z = 3} \] Quick Tip: For \(3\times 3\) systems, Cramer’s Rule is the fastest way if \(\det(A)\neq 0\).
Maximize \(Z = 8000x + 12000y\) under the constraints: \[ 9x + 12y \leq 180, \quad 3x + 4y \leq 60, \quad x + 3y \leq 30, \quad x \geq 0, \; y \geq 0 \]
View Solution
Step 1: Simplify constraints.
\[ 9x + 12y \leq 180 \;\;\Rightarrow\;\; 3x + 4y \leq 60 \quad (same as 2nd constraint) \]
So effective constraints are: \[ 3x + 4y \leq 60, \quad x + 3y \leq 30, \quad x \geq 0, \; y \geq 0 \]
Step 2: Find corner points.
- When \(x=0\): \(4y \leq 60 \Rightarrow y \leq 15\), and \(3y \leq 30 \Rightarrow y \leq 10\). So feasible point \((0,10)\).
- When \(y=0\): \(3x \leq 60 \Rightarrow x \leq 20\), and \(x \leq 30\). So feasible point \((20,0)\).
- Intersection of \(3x+4y=60\) and \(x+3y=30\): \[ 3x+4y=60 \quad (1), \quad x+3y=30 \quad (2) \]
From (2), \(x=30-3y\). Substitute into (1): \[ 3(30-3y) + 4y = 60 \;\;\Rightarrow\;\; 90-9y+4y=60 \;\;\Rightarrow\;\; -5y=-30 \;\;\Rightarrow\;\; y=6, \; x=12 \]
So intersection point \((12,6)\).
Step 3: Evaluate objective function at feasible points.
\[ Z = 8000x+12000y \]
- At \((0,0)\): \(Z=0\)
- At \((20,0)\): \(Z=160000\)
- At \((0,10)\): \(Z=120000\)
- At \((12,6)\): \(Z=8000(12)+12000(6)=96000+72000=168000\)
Step 4: Conclusion.
Maximum value of \(Z\) is \[ \boxed{168000 \;\;at\;\; (x,y)=(12,6)} \] Quick Tip: In LPP, the maximum/minimum value always occurs at a corner point of the feasible region.
Evaluate \[ \int_0^{\pi/2} \frac{\sin^4x}{\sin^4x + \cos^4x} \, dx \]
View Solution
Step 1: Use property of definite integrals.
\[ I = \int_0^{\pi/2} \frac{\sin^4x}{\sin^4x+\cos^4x} dx \]
Now, \[ I = \int_0^{\pi/2} \frac{\cos^4x}{\cos^4x+\sin^4x} dx \quad (by x \to \tfrac{\pi}{2}-x ) \]
Step 2: Add the two results.
\[ 2I = \int_0^{\pi/2} \frac{\sin^4x}{\sin^4x+\cos^4x} dx + \int_0^{\pi/2} \frac{\cos^4x}{\cos^4x+\sin^4x} dx \] \[ 2I = \int_0^{\pi/2} 1 \, dx = \frac{\pi}{2} \]
Step 3: Final value.
\[ I = \frac{\pi}{4} \]
Final Answer: \[ \boxed{\tfrac{\pi}{4}} \] Quick Tip: In integrals of the form \(\int_0^{\pi/2} f(\sin x,\cos x) dx\), use the property \(I=\int_0^{\pi/2} f(\cos x,\sin x) dx\).
Evaluate \[ \int_0^{\pi/2} \ln(\sin x) \, dx \]
View Solution
Step 1: Use property of definite integrals.
Let \[ I = \int_0^{\pi/2} \ln(\sin x)\, dx \]
Using property: \[ I = \int_0^{\pi/2} \ln(\cos x)\, dx \]
Step 2: Add the two results.
\[ 2I = \int_0^{\pi/2} [\ln(\sin x) + \ln(\cos x)] dx \] \[ 2I = \int_0^{\pi/2} \ln(\sin x \cos x)\, dx \]
Step 3: Simplify.
\[ \sin x \cos x = \tfrac{1}{2}\sin 2x \]
So, \[ 2I = \int_0^{\pi/2} \ln\left(\tfrac{1}{2}\sin 2x\right)\, dx \]
Step 4: Substitution.
Put \(2x = t \;\Rightarrow\; dx = dt/2\), limits \(0 \to \pi\). \[ 2I = \frac{1}{2}\int_0^{\pi} \ln\left(\tfrac{1}{2}\sin t\right) dt \] \[ = \frac{1}{2}\left[\int_0^{\pi} \ln(\sin t)\, dt - \int_0^{\pi} \ln 2 \, dt\right] \]
Step 5: Evaluate.
\[ \int_0^{\pi} \ln(\sin t)\, dt = 2\int_0^{\pi/2} \ln(\sin t)\, dt = 2I \]
So, \[ 2I = \frac{1}{2}(2I - \pi \ln 2) \] \[ 4I = 2I - \pi \ln 2 \;\;\Rightarrow\;\; 2I = -\pi \ln 2 \] \[ I = -\frac{\pi}{2}\ln 2 \]
Final Answer: \[ \boxed{-\tfrac{\pi}{2}\ln 2} \] Quick Tip: Standard result: \(\int_0^{\pi/2} \ln(\sin x) dx = -\tfrac{\pi}{2}\ln 2\). Similarly, \(\int_0^{\pi/2} \ln(\cos x) dx = -\tfrac{\pi}{2}\ln 2\).
If \(y = \sin^{-1}x\), then prove that \((1 - x^{2}) \dfrac{d^{2}y}{dx^{2}} - x \dfrac{dy}{dx} = 0\).
View Solution
We are given: \[ y = \sin^{-1}x \]
Step 1: First derivative. \[ \frac{dy}{dx} = \frac{1}{\sqrt{1-x^{2}}} \]
Step 2: Second derivative. \[ \frac{d^{2}y}{dx^{2}} = \frac{d}{dx}\left(\frac{1}{\sqrt{1-x^{2}}}\right) = \frac{1}{2}(1-x^{2})^{-\tfrac{3}{2}} \cdot (2x) = \frac{x}{(1-x^{2})^{\tfrac{3}{2}}} \]
Step 3: Substitute in given expression. \[ (1-x^{2}) \cdot \frac{d^{2}y}{dx^{2}} - x \cdot \frac{dy}{dx} \] \[ = (1-x^{2}) \cdot \frac{x}{(1-x^{2})^{3/2}} - x \cdot \frac{1}{\sqrt{1-x^{2}}} \] \[ = \frac{x(1-x^{2})}{(1-x^{2})^{3/2}} - \frac{x}{\sqrt{1-x^{2}}} \] \[ = \frac{x}{\sqrt{1-x^{2}}} - \frac{x}{\sqrt{1-x^{2}}} = 0 \]
Hence Proved. \[ \boxed{(1 - x^{2}) \frac{d^{2}y}{dx^{2}} - x \frac{dy}{dx} = 0} \] Quick Tip: For proving differential identities, always calculate \(\dfrac{dy}{dx}\) and \(\dfrac{d^{2}y}{dx^{2}}\), then simplify the given expression.
Find the equation of tangent of the curve \(y = \cos(x+y)\), \(-2\pi \leq x \leq 2\pi\), which is parallel to the line \(x + 2y = 0\).
View Solution
Step 1: Slope of the given line.
Equation: \(x + 2y = 0 \;\Rightarrow\; y = -\tfrac{1}{2}x\).
So, slope = \(-\tfrac{1}{2}\).
Step 2: Differentiate the curve.
Curve: \[ y = \cos(x+y) \]
Differentiate both sides w.r.t. \(x\): \[ \frac{dy}{dx} = -\sin(x+y)\left(1 + \frac{dy}{dx}\right) \]
\[ \frac{dy}{dx} + \sin(x+y)\frac{dy}{dx} = -\sin(x+y) \] \[ \frac{dy}{dx}(1 + \sin(x+y)) = -\sin(x+y) \] \[ \frac{dy}{dx} = \frac{-\sin(x+y)}{1 + \sin(x+y)} \]
Step 3: Condition for parallelism.
We need \(\dfrac{dy}{dx} = -\tfrac{1}{2}\). \[ \frac{-\sin(x+y)}{1 + \sin(x+y)} = -\frac{1}{2} \] \[ \frac{\sin(x+y)}{1 + \sin(x+y)} = \frac{1}{2} \] \[ 2 \sin(x+y) = 1 + \sin(x+y) \quad \Rightarrow \quad \sin(x+y) = 1 \]
Step 4: Corresponding points.
If \(\sin(x+y) = 1 \;\Rightarrow\; x+y = \frac{\pi}{2} + 2n\pi\).
Also, from curve \(y = \cos(x+y) = \cos\left(\frac{\pi}{2} + 2n\pi\right) = 0\).
So, \(y=0\), \(x = \frac{\pi}{2} + 2n\pi\).
For \(-2\pi \leq x \leq 2\pi\), possible \(x = -\tfrac{3\pi}{2}, \; \tfrac{\pi}{2}\).
Step 5: Equation of tangent.
Equation of tangent: \(y - y_{1} = m(x - x_{1})\), with \(m = -\tfrac{1}{2}\).
At \(\left(\tfrac{\pi}{2},0\right)\): \[ y - 0 = -\tfrac{1}{2}(x - \tfrac{\pi}{2}) \] \[ x + 2y - \tfrac{\pi}{2} = 0 \]
At \(\left(-\tfrac{3\pi}{2},0\right)\): \[ y - 0 = -\tfrac{1}{2}(x + \tfrac{3\pi}{2}) \] \[ x + 2y + \tfrac{3\pi}{2} = 0 \]
Final Answer: \[ \boxed{\; x + 2y - \tfrac{\pi}{2} = 0 \quad or \quad x + 2y + \tfrac{3\pi}{2} = 0 \;} \] Quick Tip: For tangents parallel to a line: find slope from given line, equate with \(\dfrac{dy}{dx}\) of curve, then find points and equations.
Find the vector equation of a plane which passes through the point of intersection of the planes \[ \vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = 6 \quad and \quad \vec{r} \cdot (2\hat{i} + 3\hat{j} + 4\hat{k}) = -5 \]
and the point \((1,1,1)\).
View Solution
Step 1: Equation of required plane.
The equation of a plane passing through the line of intersection of two planes is: \[ \vec{r} \cdot \vec{n}_1 = d_1 + \lambda (\vec{r} \cdot \vec{n}_2 - d_2) \]
Here, \[ \vec{n}_1 = (1,1,1), \quad d_1 = 6 \] \[ \vec{n}_2 = (2,3,4), \quad d_2 = -5 \]
So, \[ \vec{r} \cdot (1,1,1) - 6 + \lambda \big(\vec{r} \cdot (2,3,4) + 5 \big) = 0 \]
Step 2: General equation of the plane. \[ (x+y+z - 6) + \lambda (2x + 3y + 4z + 5) = 0 \]
Step 3: Condition of passing through \((1,1,1)\).
Substitute \(x=1, y=1, z=1\): \[ (1+1+1 - 6) + \lambda (2(1)+3(1)+4(1)+5) = 0 \]
\[ (-3) + \lambda (14) = 0 \quad \implies \quad \lambda = \frac{3}{14} \]
Step 4: Required plane.
Substitute \(\lambda = \frac{3}{14}\): \[ (x+y+z - 6) + \frac{3}{14}(2x + 3y + 4z + 5) = 0 \]
Multiply through by \(14\): \[ 14(x+y+z - 6) + 3(2x + 3y + 4z + 5) = 0 \]
\[ 14x + 14y + 14z - 84 + 6x + 9y + 12z + 15 = 0 \]
\[ 20x + 23y + 26z - 69 = 0 \]
Final Answer: \[ \boxed{20x + 23y + 26z - 69 = 0} \] Quick Tip: The plane through the intersection of two planes always involves a parameter \(\lambda\), which is determined using the given point.
Solve the differential equation: \[ \frac{dy}{dx} - y = \cos x \]
View Solution
Step 1: Standard form. \[ \frac{dy}{dx} - y = \cos x \]
This is a linear differential equation of the form: \[ \frac{dy}{dx} + P(x) y = Q(x), \quad P(x) = -1, \; Q(x) = \cos x \]
Step 2: Find the integrating factor (IF). \[ IF = e^{\int P(x)dx} = e^{\int -1 dx} = e^{-x} \]
Step 3: Multiply through by IF. \[ e^{-x}\frac{dy}{dx} - e^{-x}y = e^{-x}\cos x \]
\[ \implies \frac{d}{dx}(y e^{-x}) = e^{-x}\cos x \]
Step 4: Integrate both sides. \[ y e^{-x} = \int e^{-x}\cos x \, dx + C \]
Now, \[ \int e^{-x}\cos x \, dx = \frac{e^{-x}(-\cos x + \sin x)}{2} \]
Step 5: Final solution. \[ y e^{-x} = \frac{e^{-x}(\sin x - \cos x)}{2} + C \]
\[ y = \frac{\sin x - \cos x}{2} + Ce^{x} \]
Final Answer: \[ \boxed{y = \frac{\sin x - \cos x}{2} + Ce^{x}} \] Quick Tip: For first-order linear differential equations, always compute the Integrating Factor (IF) and reduce it to the derivative of \((y \cdot IF)\).
Comments