KCET 2023 Mathematics Question Paper: Download Set A3 Question Paper with Answer Key PDF

Shivam Yadav's profile photo

Shivam Yadav

Updated on - Nov 14, 2025

KCET 2023 Mathematics Question Paper Set A3 is available here for download. KCET 2023 Question Paper May 20 Shift 2 2:30 PM to 3:50 PM was conducted for Mathematics Paper. KCET 2023 Question Paper included 60 MCQ-based questions in total. Each candidate will be awarded +1 for correct answers, however, there will be no negative marking for incorrect responses. Students got 80 minutes to attempt KCET 2023 Mathematics Question Paper.

KCET 2023 Mathematics Question Paper with Answer Key PDF Set A3

KCET 2024 Mathematics Question Paper with Answer Key download iconDownload Check Solutions
kcet 2024 Mathematics Question Paper with answer key

KCET 2023 Mathematics Questions with Solutions

Question 1:


Let \( A = \{x, y, z, u\} \) and \( B = \{a, b\} \). A function \( f: A \to B \) is selected randomly. The probability that the function is an onto function is
 

  • (A) \( \frac{5}{8} \)
  • (B) \( \frac{1}{35} \)
  • (C) \( \frac{7}{8} \)
  • (D) \( \frac{1}{8} \)

Question 2:


The shaded region in the figure given is the solution of which of the inequalities?




 

  • (A) \( x + y \geq 7, \ 2x - 3y + 6 \geq 0, \ x \geq 0, \ y \geq 0 \)
  • (B) \( x + y \leq 7, \ 2x - 3y + 6 \leq 0, \ x \geq 0, \ y \geq 0 \)
  • (C) \( x + y \leq 7, \ 2x - 3y + 6 \geq 0, \ x \geq 0, \ y \geq 0 \)
  • (D) \( x + y \geq 7, \ 2x - 3y + 6 \leq 0, \ x \geq 0, \ y \geq 0 \)

Question 3:


If \( A \) and \( B \) are events such that \( P(A) = \frac{1}{4}, P(A/B) = \frac{1}{2} \) and \( P(B/A) = \frac{2}{3} \), then \( P(B) \) is
 

  • (A) \( \frac{2}{3} \)
  • (B) \( \frac{1}{2} \)
  • (C) \( \frac{1}{6} \)
  • (D) \( \frac{1}{3} \)

Question 4:


A bag contains \( 2n + 1 \) coins. It is known that \( n \) of these coins have heads on both sides, whereas the other \( n + 1 \) coins are fair. One coin is selected at random and tossed. If the probability that the toss results in heads is \( \frac{31}{42} \), then the value of \( n \) is
 

  • (A) 8
  • (B) 10
  • (C) 5
  • (D) 6

Question 5:


The value of



is

 

  • (A) 1
  • (B) 2
  • (C) -1
  • (D) 0

Question 6:


The modulus of the complex number \[ \frac{(1 + i)^2 (1 + 3i)}{(2 - 6i)(2 - 2i)} \]
is

 

  • (A) \( \frac{1}{\sqrt{2}} \)
  • (B) \( \frac{\sqrt{2}}{4} \)
  • (C) \( \frac{4}{\sqrt{2}} \)
  • (D) \( \frac{2}{\sqrt{2}} \)

Question 7:


Given that \( a, b \) and \( x \) are real numbers and \( a < b, \ x < 0 \), then
 

  • (A) \( \frac{a}{x} < \frac{b}{x} \)
  • (B) \( \frac{a}{x} \leq \frac{b}{x} \)
  • (C) \( \frac{a}{x} > \frac{b}{x} \)
  • (D) \( \frac{a}{x} \geq \frac{b}{x} \)

Question 8:


Ten chairs are numbered as 1 to 10. Three women and two men wish to occupy one chair each. First the women choose the chairs marked 1 to 6, then the men choose the chairs from the remaining. The number of possible ways is
 

  • (A) \( 6C_3 \times 4P_2 \)
  • (B) \( 6P_3 \times 4C_2 \)
  • (C) \( 6C_3 \times 4C_2 \)
  • (D) \( 6P_3 \times 4P_2 \)

Question 9:


Which of the following is an empty set?
 

  • (A) \( \{ x : x^2 - 9 = 0, \ x \in \mathbb{R} \} \)
  • (B) \( \{ x : x^2 = x + 2, \ x \in \mathbb{R} \} \)
  • (C) \( \{ x : x^2 - 1 = 0, \ x \in \mathbb{R} \} \)
  • (D) \( \{ x : x^2 + 1 = 0, \ x \in \mathbb{R} \} \)

Question 10:


If \( f(x) = ax + b \), where \( a \) and \( b \) are integers, \( f(-1) = -5 \) and \( f(3) = 3 \), then \( a \) and \( b \) are respectively
 

  • (A) 0, 2
  • (B) 2, 3
  • (C) -3, -1
  • (D) 2, -3

Question 11:


The value of \[ e^{\log_{10} \tan 1^\circ + \log_{10} \tan 2^\circ + \log_{10} \tan 3^\circ + \cdots + \log_{10} \tan 89^\circ} \]
is

 

  • (A) \( \frac{1}{e} \)
  • (B) 1
  • (C) 0
  • (D) 3

Question 12:


A line passes through \( (2, 2) \) and is perpendicular to the line \( 3x + y = 3 \). Its y-intercept is
 

  • (A) 1
  • (B) \( \frac{4}{3} \)
  • (C) \( \frac{1}{3} \)
  • (D) \( \frac{2}{3} \)

Question 13:


The distance between the foci of a hyperbola is 16 and its eccentricity is \( \sqrt{2} \). Its equation is
 

  • (A) \( 2x^2 - 3y^2 = 7 \)
  • (B) \( y^2 - x^2 = 32 \)
  • (C) \( x^2 - y^2 = 32 \)
  • (D) \( \frac{x^2}{4} - \frac{y^2}{9} = 1 \)

Question 14:


If \[ \lim_{x \to 0} \frac{\sin(2 + x) - \sin(2 - x)}{x} = A \cos B \]
then the values of \( A \) and \( B \) respectively are

 

  • (A) 2, 1
  • (B) 1, 1
  • (C) 2, 2
  • (D) 1, 2

Question 15:


If \( n \) is even and the middle term in the expansion of \( \left( x^2 + \frac{1}{x} \right)^n \) is \( 924x^6 \), then \( n \) is equal to
 

  • (A) 12
  • (B) 8
  • (C) 10
  • (D) 14

Question 16:


The \(n^{th}\) term of the series \[ 1 + \frac{3}{7} + \frac{5}{7^2} + \frac{7}{7^3} + \dots \]
is

 

  • (A) \( \frac{2n - 1}{7^n} \)
  • (B) \( \frac{2n + 1}{7^{n-1}} \)
  • (C) \( \frac{2n - 1}{7^{n-1}} \)
  • (D) \( \frac{2n + 1}{7^n} \)

Question 17:


If \( p \left( \frac{1}{q} + \frac{1}{r} \right), q \left( \frac{1}{r} + \frac{1}{p} \right), r \left( \frac{1}{p} + \frac{1}{q} \right) \) are in A.P., then \( p, q, r \) are:
 

  • (A) are in A.P.
  • (B) are not in G.P.
  • (C) are not in A.P.
  • (D) are in G.P.

Question 18:


Let \( f : \mathbb{R} \to \mathbb{R} \) be defined by \( f(x) = 3x^2 - 5 \) and \( g : \mathbb{R} \to \mathbb{R} \) by \( g(x) = \frac{x}{x^2 + 1} \). Then \( g \circ f \) is
 

  • (A) \( \frac{3x^2}{x^4 + 2x^2 - 4} \)
  • (B) \( \frac{3x^2}{9x^4 + 30x^2 - 2} \)
  • (C) \( \frac{3x^2 - 5}{9x^4 - 30x^2 + 26} \)
  • (D) \( \frac{3x^2 - 5}{9x^4 - 6x^2 + 26} \)

Question 19:


Let the relation \( R \) be defined in \( \mathbb{N} \) by \( aRb \) if \( 3a + 2b = 27 \). Then \( R \) is
 

  • (A) \( \{(1, 12), (3, 9), (5, 6), (7, 3), (9, 0)\} \)
  • (B) \( \{(2, 1), (9, 3), (6, 5), (3, 7)\} \)
  • (C) \( \{(1, 12), (3, 9), (5, 6), (7, 3)\} \)
  • (D) \( \{(0, \frac{27}{2}), (1, 12), (3, 9), (5, 6), (7, 3)\} \)

Question 20:


Let \( f(x) = \sin 2x + \cos 2x \) and \( g(x) = x^2 - 1 \), then \( g(f(x)) \) is invertible in the domain
 

  • (A) \( x \in \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] \)
  • (B) \( x \in \left[ 0, \frac{\pi}{4} \right] \)
  • (C) \( x \in \left[ -\frac{\pi}{4}, \frac{\pi}{4} \right] \)
  • (D) \( x \in \left[ -\frac{\pi}{8}, \frac{\pi}{8} \right] \)

Question 21:


The contrapositive of the statement

\textit{"If two lines do not intersect in the same plane then they are parallel." is

 

  • (A) If two lines are not parallel then they do not intersect in the same plane.
  • (B) If two lines are parallel then they do not intersect in the same plane.
  • (C) If two lines are not parallel then they intersect in the same plane.
  • (D) If two lines are parallel then they intersect in the same plane.

Question 22:


The mean of 100 observations is 50 and their standard deviation is 5. Then the sum of squares of all observations is
 

  • (A) 250000
  • (B) 255000
  • (C) 50000
  • (D) 252500

Question 23:


Let \( f : \mathbb{R} \to \mathbb{R} \) and \( g : [0, \infty) \to \mathbb{R} \) be defined by \( f(x) = x^2 \) and \( g(x) = \sqrt{x} \). Which one of the following is not true?
 

  • (A) \( (fo g)(2) = 2 \)
  • (B) \( (go f)(-2) = 2 \)
  • (C) \( (go f)(4) = 4 \)
  • (D) \( (fo g)(-4) = 4 \)

Question 24:


If \( A \) and \( B \) are two matrices such that \( AB = B \) and \( BA = A \), then \( A^2 + B^2 = \)
 

  • (A) \( AB \)
  • (B) \( 2BA \)
  • (C) \( A + B \)
  • (D) \( 2AB \)

Question 25:


If \( A = \begin{bmatrix} 2-k & 2
1 & 3-k \end{bmatrix} \) is a singular matrix, then the value of \( 5k - k^2 \) is equal to

 

  • (A) -4
  • (B) 6
  • (C) 4
  • (D) -6

Question 26:


The area of a triangle with vertices \( (-3, 0) \), \( (3, 0) \), and \( (0, k) \) is 9 sq. units. The value of \( k \) is
 

  • (A) 6
  • (B) 3
  • (C) 9
  • (D) -9

Question 27:


If \( \Delta = \begin{vmatrix} 1 & a & a^2
1 & b & b^2
1 & c & c^2 \end{vmatrix} \) and \( \Delta_1 = \begin{vmatrix} 1 & 1 & 1
bc & ca & ab
a & b & c \end{vmatrix} \), then

 

  • (A) \( \Delta_1 \neq \Delta \)
  • (B) \( \Delta_1 = -\Delta \)
  • (C) \( \Delta_1 = \Delta \)
  • (D) \( \Delta_1 = 3\Delta \)

Question 28:


If \[ \sin^{-1}\left( \frac{2a}{1 + a^2} \right) + \cos^{-1}\left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{-1}\left( \frac{2x}{1 - x^2} \right) \]
where \( a, x \in (0, 1) \), then the value of \( x \) is

 

  • (A) \( \frac{2a}{1 + a^2} \)
  • (B) \( \frac{2a}{1 - a^2} \)
  • (C) 0
  • (D) \( \frac{a}{2} \)

Question 29:


The value of \[ \cot^{-1}\left[ \frac{\sqrt{1 - \sin x} + \sqrt{1 + \sin x}}{\sqrt{1 - \sin x} - \sqrt{1 + \sin x}} \right] \]
where \( x \in \left( 0, \frac{\pi}{4} \right) \) is

 

  • (A) \( \pi - \frac{x}{3} \)
  • (B) \( \pi - \frac{x}{2} \)
  • (C) \( \frac{x}{2} \)
  • (D) \( \frac{x}{2} - \pi \)

Question 30:


If \[ x \begin{bmatrix} 3
2 \end{bmatrix} + y \begin{bmatrix} 1
-1 \end{bmatrix} = \begin{bmatrix} 15
5 \end{bmatrix} \]
then the value of \( x \) and \( y \) are

 

  • (A) \( x = -4, y = -3 \)
  • (B) \( x = -4, y = 3 \)
  • (C) \( x = 4, y = 3 \)
  • (D) \( x = 4, y = -3 \)

Question 31:


If the function is \( f(x) = \frac{1}{x+2} \), then the point of discontinuity of the composite function \( y = f(f(x)) \) is
 

  • (A) \( \frac{2}{5} \)
  • (B) \( \frac{1}{2} \)
  • (C) \( -\frac{5}{2} \)
  • (D) \( \frac{5}{2} \)

Question 32:


If \( y = a \sin x + b \cos x \), then \( y^2 + \left( \frac{dy}{dx} \right)^2 \) is a
 

  • (A) function of \( x \) and \( y \)
  • (B) constant
  • (C) function of \( x \)
  • (D) function of \( y \)

Question 33:


If \[ f(x) = 1 + nx + \frac{n(n-1)}{2} x^2 + \frac{n(n-1)(n-2)}{6} x^3 + \dots + x^n \]
then \( f''(1) \) is

 

  • (A) \( n(n-1) 2^n \)
  • (B) \( 2^{n-1} \)
  • (C) \( (n-1)2^{n-1} \)
  • (D) \( n(n-1)2^{n-2} \)

Question 34:


If \[ A = \begin{bmatrix} 1 & -\tan \frac{\alpha}{2}
\tan \frac{\alpha}{2} & 1 \end{bmatrix} \]
and \( AB = I \), then \( B \) =:

 

  • (A) \( \cos^2 \frac{\alpha}{2} \cdot I \)
  • (B) \( \sin^2 \frac{\alpha}{2} \cdot A \)
  • (C) \( \cos^2 \frac{\alpha}{2} \cdot A^T \)
  • (D) \( \cos^2 \frac{\alpha}{2} \cdot A \)

Question 35:


If \( u = \sin^{-1}\left( \frac{2x}{1 + x^2} \right) \) and \( v = \tan^{-1}\left( \frac{2x}{1 - x^2} \right) \), then \( \frac{du}{dv} \) is
 

  • (A) \( \frac{1 - x^2}{1 + x^2} \)
  • (B) 1
  • (C) \( \frac{1}{2} \)
  • (D) 2

Question 36:


The function \( f(x) = \cot x \) is discontinuous on every point of the set
 

  • (A) \( \left\{ x = \left( 2n + 1 \right) \frac{\pi}{2}, n \in \mathbb{Z} \right\} \)
  • (B) \( \left\{ x = \frac{n\pi}{2}, n \in \mathbb{Z} \right\} \)
  • (C) \( \left\{ x = n\pi, n \in \mathbb{Z} \right\} \)
  • (D) \( \left\{ x = 2n\pi, n \in \mathbb{Z} \right\} \)

Question 37:


A particle moves along the curve \( \frac{x^2}{16} + \frac{y^2}{4} = 1 \). When the rate of change of abscissa is 4 times that of its ordinate, then the quadrant in which the particle lies is
 

  • (A) III or IV
  • (B) II or III
  • (C) I or III
  • (D) II or IV

Question 38:


An enemy fighter jet is flying along the curve given by \( y = x^2 + 2 \). A soldier is placed at \( (3, 2) \) and wants to shoot down the jet when it is nearest to him. Then the nearest distance is
 

  • (A) 2 units
  • (B) \( \sqrt{5} \) units
  • (C) \( \sqrt{3} \) units
  • (D) \( \sqrt{6} \) units

Question 39:


Evaluate the integral ∫28 (5√(10-x))/(5√x + 5√(10-x)) dx:

  • (A) 4
  • (B) 3
  • (C) 5
  • (D) 6

Question 40:


Evaluate the integral \[ \int \sqrt{\csc x - \sin x} \, dx = \]
 

  • (A) \( 2 \sqrt{\sin x} + C \)
  • (B) \( \frac{2}{\sqrt{\sin x}} + C \)
  • (C) \( \sqrt{\sin x} + C \)
  • (D) \( \frac{\sqrt{\sin x}}{2} + C \)

Question 41:


If \( f(x) \) and \( g(x) \) are two functions with \( g(x) = x - \frac{1}{x} \) and \( f \circ g (x) = x^3 - \frac{1}{x^3} \), then \( f'(x) \) =:
 

  • (A) \( x^2 - \frac{1}{x^2} \)
  • (B) \( 1 - \frac{1}{x^2} \)
  • (C) \( 3x^2 + 3 \)
  • (D) \( 3x^2 + \frac{3}{x^4} \)

Question 42:


A circular plate of radius 5 cm is heated. Due to expansion, its radius increases at the rate of 0.05 cm/sec. The rate at which its area is increasing when the radius is 5.2 cm is:
 

  • (A) \( 5.05 \pi \, cm^2/sec \)
  • (B) \( 0.52 \pi \, cm^2/sec \)
  • (C) \( 5.2 \pi \, cm^2/sec \)
  • (D) \( 27.4 \pi \, cm^2/sec \)

Question 43:


The distance \( s \) in meters travelled by a particle in \( t \) seconds is given by \[ s = \frac{2t^3}{3} - 18t + \frac{5}{3} \]
The acceleration when the particle comes to rest is:

 

  • (A) \( 12 \, m^2/sec \)
  • (B) \( 18 \, m^2/sec \)
  • (C) \( 3 \, m^2/sec \)
  • (D) \( 10 \, m^2/sec \)

Question 44:


Evaluate the integral \[ \int_{0}^{\pi} \frac{x \tan x}{\sec x - \csc x} \, dx = \]
 

  • (A) \( \frac{\pi}{2} \)
  • (B) \( \frac{\pi^2}{2} \)
  • (C) \( \frac{\pi}{4} \)
  • (D) \( \frac{\pi^2}{4} \)

Question 45:


Evaluate the integral \[ \int \sqrt{5 - 2x + x^2} \, dx = \]
 

  • (A) \( \frac{x}{2} \sqrt{5 + 2x + x^2} + 2 \log |x - 1| + \sqrt{5 + 2x + x^2} + C \)
  • (B) \( \frac{x - 1}{2} \sqrt{5 - 2x + x^2} + 2 \log |x - 1| + \sqrt{5 - 2x + x^2} + C \)
  • (C) \( \frac{x - 1}{2} \sqrt{5 - 2x + x^2} + 2 \log |x + 1| + \sqrt{5 - 2x + x^2} + C \)
  • (D) \( \frac{x}{2} \sqrt{5 - 2x + x^2} + 4 \log |x + 1| + \sqrt{x^2 - 2x + 5} + C \)

Question 46:


Evaluate the integral \[ \int \frac{1}{1 + 3 \sin^2 x + 8 \cos^2 x} \, dx = \]
 

  • (A) \( \frac{1}{6} \tan^{-1} \left( \frac{2 \tan x}{3} \right) + C \)
  • (B) \( 6 \tan^{-1} \left( \frac{2 \tan x}{3} \right) + C \)
  • (C) \( \frac{1}{6} \tan^{-1} (2 \tan x) + C \)
  • (D) \( \tan^{-1} \left( \frac{2 \tan x}{3} \right) + C \)

Question 47:


Evaluate the integral: ∫₋₂⁰ (x³ + 3x² + 3x + 3) cos(x + 1) dx

  • (A) 4
  • (B) 1
  • (C) 0
  • (D) 3

Question 48:


The degree of the differential equation \[ 1 + \left( \frac{dy}{dx} \right)^2 + \left( \frac{d^2y}{dx^2} \right)^2 = \sqrt[3]{\frac{d^3y}{dx^3} + 1 is } \]
 

  • (A) 1
  • (B) 2
  • (C) 6
  • (D) 3

Question 49:


If \( |\vec{a} + \vec{b}| = |\vec{a} - \vec{b}| \), then:
 

  • (A) \( \vec{a} \) and \( \vec{b} \) are coincident.
  • (B) \( \vec{a} \) and \( \vec{b} \) are inclined to each other at \( 60^\circ \).
  • (C) \( \vec{a} \) and \( \vec{b} \) are perpendicular.
  • (D) \( \vec{a} \) and \( \vec{b} \) are parallel.

Question 50:


The component of \( \hat{i} \) in the direction of the vector \( \hat{i} + \hat{j} + 2 \hat{k} \) is:
 

  • (A) \( 6\sqrt{6} \)
  • (B) \( \frac{\sqrt{6}}{6} \)
  • (C) \( \sqrt{6} \)
  • (D) \( 6 \)

Question 51:

In the interval \((0, \frac{\pi}{2})\), the area lying between the curves \( y = \tan x \) and \( y = \cot x \) and the X-axis is:

 

  • (A) \( 4 \log 2 \) sq. units
  • (B) \( \log 2 \) sq. units
  • (C) \( 3 \log 2 \) sq. units
  • (D) \( 2 \log 2 \) sq. units

Question 52:

The area of the region bounded by the line \( y = x + 1 \), and the lines \( x = 3 \) and \( x = 5 \) is:

 

  • (A) \( \frac{11}{2} \) sq. units
  • (B) \( 7 \) sq. units
  • (C) \( 10 \) sq. units
  • (D) \( \frac{7}{2} \) sq. units

Question 53:

If a curve passes through the point \( (1, 1) \) and at any point \( (x, y) \) on the curve, the product of its slope and the x-coordinate of the point is equal to the y-coordinate of the point, then the curve also passes through the point:

 

  • (A) \( (-1, 2) \)
  • (B) \( (\sqrt{3}, 0) \)
  • (C) \( (2, 2) \)
  • (D) \( (3, 0) \)

Question 54:

The length of the perpendicular drawn from the point \( (3, -1, 11) \) to the line \( \frac{x /2} = \frac{y - 2}{3} = \frac{z - 3}{4} \) is:

 

  • (A) \( \sqrt{33} \)
  • (B) \( \sqrt{53} \)
  • (C) \( \sqrt{66} \)
  • (D) \( \sqrt{29} \)

Question 55:

The equation of the plane through the points \( (2, 1, 0) \), \( (3, 2, -2) \), and \( (3, 1, 7) \) is:

 

  • (A) \( 6x - 3y + 2z - 7 = 0 \)
  • (B) \( 7x - 9y - z - 5 = 0 \)
  • (C) \( 3x - 2y + 6z - 27 = 0 \)
  • (D) \( 2x - 3y + 4z - 27 = 0 \)

Question 56:

The point of intersection of the line \( x + 1 = \frac{y + 3}{3} = \frac{-z + 2}{2} \) with the plane \( 3x + 4y + 5z = 10 \) is:

 

  • (A) \( (2, 6, -4) \)
  • (B) \( (2, 6, 4) \)
  • (C) \( (-2, 6, -4) \)
  • (D) \( (2, -6, -4) \)

Question 57:

If \( (2, 3, -1) \) is the foot of the perpendicular from \( (4, 2, 1) \) to a plane, then the equation of the plane is:

 

  • (A) \( 2x - y + 2z = 0 \)
  • (B) \( 2x + y + 2z - 5 = 0 \)
  • (C) \( 2x - y + 2z + 1 = 0 \)
  • (D) \( 2x + y + 2z - 1 = 0 \)

Question 58:

If \(\left|\mathbf{a \times \mathbf{b\right|^2 + \left|\mathbf{a \cdot \mathbf{b\right|^2 = 144 \text{ and \left|\mathbf{a\right| = 4 \text{, then \left|\mathbf{b\right|\text{ is equal to \text{?

 

  • (A) 8
  • (B) 4
  • (C) 12
  • (D) 3

Question 59:

If \( \mathbf{a} + 2 \mathbf{b} + 3 \mathbf{c} = \mathbf{0} \) and \[ ( \mathbf{a} \times \mathbf{b}) + (\mathbf{b} \times \mathbf{c}) + (\mathbf{c} \times \mathbf{a}) = \lambda (\mathbf{b} \times \mathbf{c}), \]
then the value of \( \lambda \) is equal to:


 

  • (A) 4
  • (B) 6
  • (C) 2
  • (D) 3

Question 60:

If a line makes an angle of \( \frac{\pi}{3} \) with each X and Y axis, then the acute angle made by the Z-axis is:

 

  • (A) \( \frac{\pi}{2} \)
  • (B) \( \frac{\pi}{4} \)
  • (C) \( \frac{\pi}{6} \)
  • (D) \( \frac{\pi}{3} \)


KCET 2023 Paper Analysis May 20

KCET 2023 paper analysis May 20 is available here. Candidates can check KCET 2023 paper analysis by clicking on the link provided below.

Also Check:

KCET Previous Year Question Paper

Similar B.Tech Exam Question Papers

Fees Structure

Structure based on different categories

CategoriesState
General750
sc500

Note: INR 750/- in case of candidates residing outside the state of Karnataka and INR 5,000/- in case of candidates residing outside India.

In case of any inaccuracy, Notify Us! 

Comments


No Comments To Show