Rational Number is an important topic in the Mathematics section in BITSAT exam. Practising this topic will increase your score overall and make your conceptual grip on BITSAT exam stronger.
This article gives you a full set of BITSAT PYQs for Rational Number with explanations for effective preparation. Practice of BITSAT Mathematics PYQs including Rational Number questions regularly will improve accuracy, speed, and confidence in the BITSAT 2026 exam.
Also Read

BITSAT PYQs for Rational Number with Solutions
1.
Rational roots of the equation \( 2x^4 + x^3 - 11x^2 + x + 2 = 0 \) are:- 1/2, 2
- 1/3, 2, -2
- 1/2, 2, 3, 4
- 1/2, 2, 3, -2
2.
A set A has 3 elements and another set B has 6 elements. Then:3 ≤ n(A ∪ B) ≤ 6
3 ≤ n(A ∪ B) ≤ 9
- 6 ≤ n(A ∪ B) ≤ 9
- 0 ≤ n(A ∪ B) ≤ 9
3.
The range of the function \( f(x) = \sqrt{3x^2 - 4x + 5} \) is:
- \( (-\infty, \sqrt{\frac{11}{3}}) \)
- \( (-\infty, \sqrt{\frac{11}{5}}) \)
- \( \left[ \sqrt{\frac{11}{3}}, \infty \right) \)
- \( \left[ \sqrt{\frac{11}{5}}, \infty \right) \)
4.
If \( f(x) = \frac{x}{\sqrt{1 + x^2}} \), then \( (f \circ f)(x) \) is:- \( \frac{3x}{1 + x^2} \)
- \( \frac{x}{\sqrt{1 + 3x^2}} \)
- \( \frac{3x}{\sqrt{1 - x^2}} \)
- None of these
5.
Negation of the Boolean expression \( p \Leftrightarrow (q \Rightarrow p) \) is:- \( (\sim p) \land q \)
- \( p \land (\sim q) \)
- \( (\sim p) \lor (\sim q) \)
- \( (\sim p) \land (\sim q) \)
6.
If \[ A = \begin{bmatrix} 0 & 2 \\ 3 & -4 \end{bmatrix} \] and \[ kA = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix}, \] then the values of \( k \), \( a \), and \( b \) respectively are:- \( -6, -12, -18 \)
- \( -6, -4, -9 \)
- \( -6, 4, 9 \)
- \( -6, 12, 18 \)
7.
If \( \tan 15^\circ \) and \( \tan 30^\circ \) are the roots of the equation \( x^2 + px + q = 0 \), then \( pq = \):- \( \frac{6\sqrt{3} + 10}{\sqrt{3}} \)
- \( \frac{10 - 6\sqrt{3}}{3} \)
- \( \frac{10 + 6\sqrt{3}}{3} \)
- \( \frac{10 - 6\sqrt{3}}{3} \)




Comments