BITSAT PYQs for Inverse Trigonometric Functions with Solutions: Practice BITSAT Previous Year Questions

Shivam Yadav's profile photo

Shivam Yadav

Updated on - Dec 12, 2025

Inverse Trigonometric Functions is an important topic in the Mathematics section in BITSAT exam. Practising this topic will increase your score overall and make your conceptual grip on BITSAT exam stronger.

This article gives you a full set of BITSAT PYQs for Inverse Trigonometric Functions with explanations for effective preparation. Practice of BITSAT Mathematics PYQs including Inverse Trigonometric Functions questions regularly will improve accuracy, speed, and confidence in the BITSAT 2026 exam.

Also Read

BITSAT PYQs for Inverse Trigonometric Functions with Solutions

BITSAT PYQs for Inverse Trigonometric Functions with Solutions

  • 1.
    The period of $\tan 3\theta$ is

      • $\pi$
      • $\frac{3 \pi}{4}$
      • $\frac{\pi}{2}$
      • None of these

    • 2.
      If $ f(x) = \sin^{-1}(2x\sqrt{1 - x^2}) $, then $ f'(x) $ is:

        • \( \frac{2(1 - 2x^2)}{\sqrt{1 - 4x^2(1 - x^2)}} \)
        • \( \frac{2x(1 - 2x^2)}{\sqrt{1 - 4x^2(1 - x^2)}} \)
        • \( \frac{1 - 2x^2}{\sqrt{1 - 4x^2(1 - x^2)}} \)
        • \( \frac{2x\sqrt{1 - x^2}}{1 - x^2} \)

      • 3.
        The value of $\cos^{-1}x + \cos^{-1} \left(\frac{x}{2} + \frac{1}{2} \sqrt{3-3x^{2}}\right) ; \frac{1}{2} \le x \le 1 $ is

          • $ - \frac{\pi}{3}$
          • $ \frac{\pi}{3}$
          • $ \frac{3}{\pi}$
          • $ - \frac{3}{\pi}$

        • 4.
          The period of $\sin^4 \, x + \cos^4 \, x$ is

            • $\frac{\pi^4}{2}$
            • $\frac{\pi^2}{2}$
            • $\frac{\pi}{4}$
            • $\frac{\pi}{2}$

          • 5.
            If $ y = \tan^{-1}\left(\frac{2x}{1 - x^2}\right) $, then $ \frac{dy}{dx} $ is:

              • \( \frac{2}{1 + x^2} \)
              • \( \frac{1 - x^2}{1 + x^2} \)
              • \( \frac{2}{(1 - x^2)^2} \)
              • \( \frac{2}{1 - x^2} \)

            Fees Structure

            Structure based on different categories

            CategoriesState
            General3400
            Women2900
            Others7000

            Note: Candidates opting Dubai as exam centre, will have to pay INR 7000 as the application fee.

            In case of any inaccuracy, Notify Us! 

            Comments


            No Comments To Show