WBJEE 2023 Question Paper Available: Download Question Papers with Solution PDF

WBJEE 2023 Question Paper PDF are available here. WBJEEB releases the question paper separately for Paper 1 (Mathematics) and Paper 2 (Physics & Chemistry). There are 75 questions in the Mathematics paper and 40 questions in Physics & Chemistry paper each. WBJEE 2023 question paper carries a total weightage of 200 marks.

WBJEE 2023 Question Paper with Solution PDF

Paper Question Paper
Maths Check Here
Physics Check Here
Chemistry Check Here

Year-wise WBJEE Question Papers

Year Question Paper Link
2022 Download PDF
2021 Download PDF
2020 Download PDF
2019 Download PDF
2018 Download PDF
2017 Download PDF
2016 Download PDF

*The article might have information for the previous academic years, which will be updated soon subject to the notification issued by the University/College.

WBJEE 2023 Questions

  • 1.
    Which logic gate is represented by the following combination of logic gates?
    logic gate is represented by the following combination of logic gates

      • NAND
      • AND
      • NOR
      • OR

    • 2.
      Ruma reached the metro station and found that the escalator was not working. She walked up the stationary escalator with velocity \( v_1 \) in time \( t_1 \). On another day, if she remains stationary on the escalator moving with velocity \( v_2 \), the escalator takes her up in time \( t_2 \). The time taken by her to walk up with velocity \( v_1 \) on the moving escalator will be:

        • \( \frac{t_1}{t_2} \)
        • \( \frac{t_1 + t_2}{t_2 - t_1} \)
        • \( \frac{t_1 + t_2}{v_1 + v_2} \)
        • \( \frac{t_1 t_2}{t_1 + t_2} \)

      • 3.
        The variation of displacement with time of a simple harmonic motion (SHM) for a particle of mass \( m \) is represented by: \[ y = 2 \sin \left( \frac{\pi}{2} + \phi \right) \, \text{cm} \] The maximum acceleration of the particle is:

          • \( \frac{\pi^2}{2} \, \text{cm/sec}^2 \)
          • \( \frac{\pi}{2m} \, \text{cm/sec}^2 \)
          • \( \frac{\pi^2}{2m} \, \text{cm/sec}^2 \)
          • \( \frac{\pi^2}{2} \, \text{cm/sec}^2 \)

        • 4.
          A force \( \mathbf{F} = ai + bj + ck \) is acting on a body of mass \( m \). The body was initially at rest at the origin. The co-ordinates of the body after time \( t \) will be:

            • \( \frac{ar^2}{2m} i + \frac{br^2}{2m} j + \frac{cr^2}{2m} k \)
            • \( \frac{ar^2}{2m} i + \frac{br^2}{2m} j + \frac{cr^2}{2m} k \)
            • \( \frac{ar}{m} i + \frac{br}{m} j + \frac{cr}{m} k \)
            • \( \frac{ar}{m} i + \frac{br}{m} j + \frac{cr}{m} k \)

          • 5.

            A quantity \( X \) is given by: \[ X = \frac{\epsilon_0 L \Delta V}{\Delta t} \] where:
            - \( \epsilon_0 \) is the permittivity of free space,
            - \( L \) is the length,
            - \( \Delta V \) is the potential difference,
            - \( \Delta t \) is the time interval.
            The dimension of \( X \) is the same as that of:

              • Resistance
              • Charge
              • Voltage
              • Current

            Fees Structure

            Structure based on different categories

            CategoriesState
            General700
            sc500
            pwd500
            Others500

            In case of any inaccuracy, Notify Us! 

            Comments


            No Comments To Show