Properties of Gases: Overview and Sample Questions

Collegedunia Team logo

Collegedunia Team

Content Curator

Gas is one of the three fundamental states of matter. Apart from the other two fundamental states, gases do not have any definite shape, size, or volume. The Matter is divided into solid, liquid, and gas according to the amount of energy embedded in each particle, Gas particles have a high amount of energy embedded in them.

Keyterms: Gas, Liquid, Gas, Energy, Velocity, Intermolecular force, Kinetic Energy, Molecules

Read More: Kinetic Interpretation of Temperature


Gases, an overview

[Click Here for Sample Questions]

Gas is a unique state of matter in which the molecules are far apart from each other and they are constantly in motion with high velocity. Gases do not have any definite size, shape, and volume on their own, the volume of gas is equal to the volume of the container in which it is contained. The attractive force present between the molecules of a gas is called Intermolecular forces. The gases in which the intermolecular force of attraction is zero are considered ideal gases.

In ideal gases, the molecules move with high velocity and as a result, all particles will very much be apart from the nearest particle, which in turn diminishes the intermolecular force. In general, real gases at high temperatures and low pressure tend to be ideal in nature. As the temperature increases, the kinetic energy also increases, which causes the weakening of intermolecular force.

Read More: Kinetic Molecular Theory of Gases


Properties of Gases

[Click Here for Previous Year Questions]

Gas being a unique fundamental state of matter shows many physical and chemical properties. Let us take a look at the major ones among them. The weak intermolecular force of attraction between particles attributes to the peculiar physical properties exhibited by the gases.

Pressure

The pressure exerted by the gas particles on the container enclosing it is defined as the force per unit area of the wall of the container. Since the gas molecules are in continuous motion, they will always exert pressure on the inside walls of the container. The amount of pressure exerted depends on the volume of the container and the temperature present. The pressure exerted by the gas molecules will be equal at all sides of the container.

Low density

The weak intermolecular force of attraction present in gases accounts for their low density. Since the particles are highly scattered in a gas, the Mass/Volume ratio will be of very low value due to the bigger value of volume.

Indefinite shape or volume

Gas particles are always in random motion with high velocity, thanks to their kinetic energy. The shape or volume of gas is the same as the shape of the container enclosing it. If the container is spherical, then gas will have a spherical shape. The shape of gas is affected by the temperature present and the pressure applied to the gas.

Expandability and Compressibility

The low intermolecular forces between particles contribute to the expandability and compressibility of gases. In the presence of high temperature and low pressure, the intermolecular force weakens further and the gas expands. Also when low temperature and high pressure are applied, gas compresses due to increasing intermolecular forces.

Diffusivity

Gases are highly diffusible substances. The large space present between molecules diminishes the difficulty of diffusion among two gases. A homogenous mixture is always obtained as a result of diffusion between two gases. The process of diffusion is also dependent on the conditions like pressure, temperature, and composition.

Read More:


Things to Remember 

  • Gas is one of the three fundamental states of matter. Apart from the other two fundamental states, gases do not have any definite shape, size, or volume.
  • The properties of gases are indefinite pressure, low density, shape and volume, compressibility, expandability, and diffusivity.
  • Gas is a unique state of matter in which the molecules are far apart from each other and they are constantly in motion with high velocity. 
  •  The attractive force present between the molecules of a gas is called Intermolecular forces.
  • The gases in which the intermolecular force of attraction is zero are considered ideal gases.
  • Gases have the weakest intermolecular force of attraction among the three fundamental states of matter.
  • Gases do not have a definite shape or volume.
  • Gases are easily compressible and expandable.
  • In ideal gases, the intermolecular force of attraction is considered zero.
  • Due to the presence of large intermolecular spaces, gases are highly diffusible.

Previous Year Questions


Sample Questions on Properties of Gases

Ques. What happens to the volume of a gas when the temperature is increased and the pressure is decreased? (2 Marks)

Ans. The gas gets compressed when the temperature is increased and pressure is decreased and it results in a volume reduction.

Ques. What is the cause of an increase in the kinetic energy of gas particles when the temperature is increased? (2 Marks)

Ans. Since the velocity of a gas is the function of temperature, it increases upon the increase in temperature. A change in velocity will cause a change in the kinetic energy of the gas-particle.

Ques. State the major difference between ideal gases and real gases? (2 Marks)

Ans. In ideal gases, the intermolecular force of attraction is zero, whereas, in real gases, there is a considerable amount of intermolecular forces present.

Ques. Why do gases not have a definite shape or volume? (2 Marks)

Ans. Due to the presence of a weak intermolecular attraction, gas particles are highly scattered and they will not have a definite shape or volume other than that of the container enclosing the gas.

Ques. Arrange the three states of matter in increasing order of their density? (2 Marks)

Ans. Gases < Liquids < Solids

Ques. Mention the properties of a gas. (2 Marks)

Ans. There are three basic properties of a gas they are discussed below:

  1. It is easy to compress.
  2. While filling their containers they tend to expand.
  3. Compared to liquid or solid the space occupancy of them is far more.

Ques. Give 3 examples of gas. (2 Marks)

Ans. The 3 examples of gas are as follows:

Hydrogen

Nitrogen

Oxygen 

Ques. Does LPG fall under the liquid or gas category? (2 Marks)

Ans. LPG falls under both the categories. It is both a liquid and a vapour.


Do Check Out:

CBSE CLASS XII Related Questions

1.
A closely wound solenoid of \(2000 \) turns and area of cross-section \(1.6 × 10^{-4}\  m^2\), carrying a current of \(4.0 \ A\), is suspended through its centre allowing it to turn in a horizontal plane. 
(a) What is the magnetic moment associated with the solenoid?
(b) What is the force and torque on the solenoid if a uniform horizontal magnetic field of \(7.5 × 10^{-2}\  T\) is set up at an angle of \(30º\) with the axis of the solenoid?

      2.
      (a) A circular coil of 30 turns and radius 8.0 cm carrying a current of 6.0 A is suspended vertically in a uniform horizontal magnetic field of magnitude 1.0 T. The field lines make an angle of 60° with the normal of the coil. Calculate the magnitude of the counter torque that must be applied to prevent the coil from turning. 
      (b) Would your answer change, if the circular coil in (a) were replaced by a planar coil of some irregular shape that encloses the same area? (All other particulars are also unaltered.)

          3.

          A tank is filled with water to a height of 12.5cm. The apparent depth of a needle lying at the bottom of the tank is measured by a microscope to be 9.4cm. What is the refractive index of water? If water is replaced by a liquid of refractive index 1.63 up to the same height, by what distance would the microscope have to be moved to focus on the needle again?

              4.

              An object of size 3.0 cm is placed 14cm in front of a concave lens of focal length 21cm. Describe the image produced by the lens. What happens if the object is moved further away from the lens?

                  5.
                  A circular disc is rotating about its own axis at uniform angular velocity \(\omega.\) The disc is subjected to uniform angular retardation by which its angular velocity is decreased to \(\frac {\omega}{2}\) during 120 rotations. The number of rotations further made by it before coming to rest is

                    • 120
                    • 60
                    • 40
                    • 20

                    6.
                    Two charges 5 × 10–8 C and –3 × 10–8 C are located 16 cm apart. At what point(s) on the line joining the to charges is the electric potential zero? Take the potential at infinity to be zero.

                        CBSE CLASS XII Previous Year Papers

                        Comments



                        No Comments To Show