Vectors is an important topic in the Mathematics section in MHT CET exam. Practising this topic will increase your score overall and make your conceptual grip on MHT CET exam stronger.
This article gives you a full set of MHT CET PYQs for Vectors with explanations for effective preparation. Practice of MHT CET Mathematics PYQs including Vectors questions regularly will improve accuracy, speed, and confidence in the MHT CET 2026 exam.
Also Read
MHT CET PYQs for Vectors with Solutions
1.
If $\vec{a} , \vec{b} , \vec{c}$ are mutually perpendicular vectors having magnitudes 1, 2, 3 respectively, then $[\vec{a} + \vec{b} + \vec{c} \, \, \vec{b} - \vec{a} - \vec{c}] = ?$- 0
- 6
- 12
- 18
2.
Evaluate \( \sin \left( \tan^{-1}\frac{4}{5} + \tan^{-1}\frac{4}{3} + \tan^{-1}\frac{1}{9} - \tan^{-1}\frac{1}{7} \right) \):- \( \frac{1}{2} \)
- \( \frac{1}{\sqrt{2}} \)
- \( \frac{\sqrt{3}}{2} \)
- \( 1 \)
3.
Let \( \mathbf{a} \), \( \mathbf{b} \), and \( \mathbf{c} \) be vectors of magnitude 2, 3, and 4 respectively. If: - \( \mathbf{a} \) is perpendicular to \( (\mathbf{b} + \mathbf{c}) \), - \( \mathbf{b} \) is perpendicular to \( (\mathbf{c} + \mathbf{a}) \), - \( \mathbf{c} \) is perpendicular to \( (\mathbf{a} + \mathbf{b}) \), then the magnitude of \( \mathbf{a} + \mathbf{b} + \mathbf{c} \) is equal to:- 29
- \( \sqrt{29} \)
- 26
- \( \sqrt{26} \)
4.
If and are two probability density functions,Which one of the following statements is true?- (A) Mean of and are same; Variance of and are same
- (B) Mean of and are same; Variance of and are different
- (C) Mean of and are different; Variance of and are same
- (D) Mean of and are different; Variance of and are different
5.
If \( \sqrt{\frac{y}{x}} + 4\sqrt{\frac{x}{y}} = 4 \), then \( \frac{dy}{dx} \):- \( xy \)
- \( \frac{x}{y} \)
- \( -4 \)
- \( 4 \)
6.
Given the vectors: \[ \mathbf{a} = i + 3j - k, \quad \mathbf{b} = 3i - j + 2k, \quad \mathbf{c} = i + 2j - 2k \] and the following information: \[ \frac{\mathbf{a} \cdot \mathbf{c}}{|\mathbf{c}|} = \frac{10}{3} \] Find the value of \( \alpha + \beta \) and the projection of \( \mathbf{a} \) on \( \mathbf{c} \).- \( \alpha + \beta = 30^\circ \), Projection of \( \mathbf{a} \) on \( \mathbf{c} = 5 \)
- \( \alpha + \beta = 45^\circ \), Projection of \( \mathbf{a} \) on \( \mathbf{c} = 4 \)
- \( \alpha + \beta = 60^\circ \), Projection of \( \mathbf{a} \) on \( \mathbf{c} = 6 \)
- \( \alpha + \beta = 90^\circ \), Projection of \( \mathbf{a} \) on \( \mathbf{c} = 7 \)



Comments