MHT CET PYQs for Vectors with Solutions: Practice MHT CET Previous Year Questions

Shivam Yadav's profile photo

Shivam Yadav

Educational Content Expert | Updated on - Nov 26, 2025

Vectors is an important topic in the Mathematics section in MHT CET exam. Practising this topic will increase your score overall and make your conceptual grip on MHT CET exam stronger.

This article gives you a full set of MHT CET PYQs for Vectors with explanations for effective preparation. Practice of MHT CET Mathematics PYQs including Vectors questions regularly will improve accuracy, speed, and confidence in the MHT CET 2026 exam.

Also Read

MHT CET PYQs for Vectors with Solutions

  • 1.
    If $\vec{a} , \vec{b} , \vec{c}$ are mutually perpendicular vectors having magnitudes 1, 2, 3 respectively, then $[\vec{a} + \vec{b} + \vec{c} \, \, \vec{b} - \vec{a} - \vec{c}] = ?$

      • 0
      • 6
      • 12
      • 18

    • 2.
      Evaluate \( \sin \left( \tan^{-1}\frac{4}{5} + \tan^{-1}\frac{4}{3} + \tan^{-1}\frac{1}{9} - \tan^{-1}\frac{1}{7} \right) \):

        • \( \frac{1}{2} \)
        • \( \frac{1}{\sqrt{2}} \)
        • \( \frac{\sqrt{3}}{2} \)
        • \( 1 \)

      • 3.
        Let \( \mathbf{a} \), \( \mathbf{b} \), and \( \mathbf{c} \) be vectors of magnitude 2, 3, and 4 respectively. If: - \( \mathbf{a} \) is perpendicular to \( (\mathbf{b} + \mathbf{c}) \), - \( \mathbf{b} \) is perpendicular to \( (\mathbf{c} + \mathbf{a}) \), - \( \mathbf{c} \) is perpendicular to \( (\mathbf{a} + \mathbf{b}) \), then the magnitude of \( \mathbf{a} + \mathbf{b} + \mathbf{c} \) is equal to:

          • 29
          • \( \sqrt{29} \)
          • 26
          • \( \sqrt{26} \)

        • 4.
          If f(x) and g(x) are two probability density functions,f(x)={xa+1:ax<0xa+10xa0 otherwise g(x)={xa:ax0xa:0xa0: otherewise Which one of the following statements is true?

            • (A) Mean of f(x) and g(x) are same; Variance of f(x) and g(x) are same
            • (B) Mean of f(x) and g(x) are same; Variance of f(x) and g(x) are different
            • (C) Mean of f(x) and g(x) are different; Variance of f(x) and g(x) are same
            • (D) Mean of f(x) and g(x) are different; Variance of f(x) and g(x) are different

          • 5.
            If \( \sqrt{\frac{y}{x}} + 4\sqrt{\frac{x}{y}} = 4 \), then \( \frac{dy}{dx} \):

              • \( xy \)
              • \( \frac{x}{y} \)
              • \( -4 \)
              • \( 4 \)

            • 6.
              Given the vectors: \[ \mathbf{a} = i + 3j - k, \quad \mathbf{b} = 3i - j + 2k, \quad \mathbf{c} = i + 2j - 2k \] and the following information: \[ \frac{\mathbf{a} \cdot \mathbf{c}}{|\mathbf{c}|} = \frac{10}{3} \] Find the value of \( \alpha + \beta \) and the projection of \( \mathbf{a} \) on \( \mathbf{c} \).

                • \( \alpha + \beta = 30^\circ \), Projection of \( \mathbf{a} \) on \( \mathbf{c} = 5 \)
                • \( \alpha + \beta = 45^\circ \), Projection of \( \mathbf{a} \) on \( \mathbf{c} = 4 \)
                • \( \alpha + \beta = 60^\circ \), Projection of \( \mathbf{a} \) on \( \mathbf{c} = 6 \)
                • \( \alpha + \beta = 90^\circ \), Projection of \( \mathbf{a} \) on \( \mathbf{c} = 7 \)

              Fees Structure

              Structure based on different categories

              CategoriesState
              General800
              Women800
              sc600
              pwd600
              Others600

              In case of any inaccuracy, Notify Us! 

              Comments


              No Comments To Show