Trigonometric Identities is an important topic in the Mathematics section in MHT CET exam. Practising this topic will increase your score overall and make your conceptual grip on MHT CET exam stronger.
This article gives you a full set of MHT CET PYQs for Trigonometric Identities with explanations for effective preparation. Practice of MHT CET Mathematics PYQs including Trigonometric Identities questions regularly will improve accuracy, speed, and confidence in the MHT CET 2026 exam.
Also Read
MHT CET PYQs for Trigonometric Identities with Solutions
1.
If , then what is the value of the following?- (A)
- (B)
- (C)
- (D)
2.
Evaluate the integral: \[ \int \frac{1}{\sin^2 2x \cdot \cos^2 2x} \, dx \]- \( \frac{1}{2} \tan 2x \)
- \( \frac{1}{2} \cot 2x \)
- \( \frac{1}{4} \cot 2x \)
- \( \frac{1}{4} \tan 2x \)
3.
The area of the region bounded by the curve and the line is:- (A) sq.units
- (B) sq.units
- (C) sq.units
- (D) sq.units
4.
If \( \tan^{-1} (\sqrt{\cos \alpha}) - \cot^{-1 (\cos \alpha) = x \), then what is \( \sin \alpha \)?}- \( \tan \left( \frac{x}{2} \right) \)
- \( \cot \left( \frac{x}{2} \right) \)
- \( \cot^2 \left( \frac{x}{2} \right) \)
- \( \tan^2 \left( \frac{x}{2} \right) \)
5.
If \( \tan(\pi \cos x) = \cot(\pi \sin x) \), then what is \( \sin \left( \frac{\pi}{2} + x \right) \)?- \( \frac{1}{2} \)
- \( \frac{1}{\sqrt{2}} \)
- \( -\frac{1}{2} \)
- \( -\frac{1}{\sqrt{2}} \)
6.
If , what is equal to :- (A)
- (B)
- (C)
- (D) None of the above
7.
If $2 \sin \left( \theta + \frac{\pi}{3}\right) = \cos \left( \theta -\frac{\pi}{6}\right) , $ then $\tan \, \theta = $- $\sqrt{3}$
- $- \frac{1}{\sqrt{3}}$
- $\frac{1}{\sqrt{3}}$
- $- \sqrt{3}$
8.
Given the equation: \[ 81 \sin^2 x + 81 \cos^2 x = 30 \] Find the value of \( x \).- \( x = \frac{\pi}{4} \)
- \( x = \frac{\pi}{6} \)
- \( x = \frac{\pi}{3} \)
- \( x = \frac{\pi}{2} \)
9.
Find the equation of the line passing through and perpendicular to the line through the points .- (A)
- (B)
- (C)
- (D)
10.
equals:- (A)
- (B)
- (C)
- (D)
11.
Jobs arrive at a facility at an average rate of in an hour shift. The arrival of the jobs follows Poisson distribution. The average service time of a job on the facility is minutes. The service time follows exponential distribution. Idle time (in hours) at the facility per shift will be _______.- (A)
- (B)
- (C)
- (D)
12.
If and Where is the unit matrix of and is the transpose of , then the value of is equal to:- (A)
- (B)
- (C)
- (D)
13.
Value of is:- (A)
- (B)
- (C)
- (D)



Comments