Trigonometric Functions is an important topic in the Mathematics section in MHT CET exam. Practising this topic will increase your score overall and make your conceptual grip on MHT CET exam stronger.
This article gives you a full set of MHT CET PYQs for Trigonometric Functions with explanations for effective preparation. Practice of MHT CET Mathematics PYQs including Trigonometric Functions questions regularly will improve accuracy, speed, and confidence in the MHT CET 2026 exam.
Also Read
MHT CET PYQs for Trigonometric Functions with Solutions
1.
Find the value of the following expression: \[ \sin^2(30^\circ) + \cos^2(60^\circ) \]- \( \frac{1}{2} \)
- \( 1 \)
- \( \frac{3}{4} \)
- \( \frac{1}{4} \)
2.
The principal solutions of tan 3θ = –1 are
\(\frac {π}{4}, \frac {7π}{12}, \frac {11π}{12}, \frac {π}{16}, \frac {19π}{4}, \frac {23π}{12}\)
\(\frac {π}{4}, \frac {7π}{12}, \frac {11π}{12}, \frac {5π}{4}, \frac {19π}{12}, \frac {23π}{12}\)
\(\frac {π}{4}, \frac {π}{12}\)
\(\frac {π}{4}, \frac {π}{12}, \frac {13π}{12}, \frac {7π}{4}, \frac {19π}{4}, \frac {23π}{12}\)
3.
Find the value of \( x \) if \( \sin(2x) = 1 \).\( x = \frac{\pi}{2} \)
\( x = \frac{\pi}{4} \)
- \( x = \frac{\pi}{6} \)
- \( x = \frac{3\pi}{4} \)
4.
The number of solutions of tanx+secx=2cosx, n(0,2π) are?
6
4
3
2
5.
In $\Delta ABC \left(a-b\right)^{2} cos^{2} \frac{C}{2} + \left(a+b\right)^{2} sin^{2} \frac{C}{2} = $- $b^{2}$
- $c^{2}$
- $a^{2}$
- $a^{2}+b^{2}+c^{2}$
6.
Find the value of \( \tan 45^\circ \).- 1
- \( \sqrt{2} \)
- 0
- \( \frac{1}{\sqrt{2}} \)
7.
If \( \tan \theta = 2 \), then the value of \( \sec^2 \theta \) is:- \( 5 \)
- \( 4 \)
- \( 3 \)
- \( 2 \)
8.
Find the equation of tangent of at- (A)
- (B)
- (C)
- (D)
9.
If \( \sin \theta = \frac{3}{5} \), find the value of \( \cos \theta \).- \( \frac{4}{5} \)
- \( \frac{2}{5} \)
- \( \frac{3}{5} \)
- \( \frac{1}{5} \)
10.
Find the value of \( \sin 30^\circ + \cos 60^\circ \).- 1
- \( \frac{\sqrt{3}}{2} \)
- \( \frac{1}{2} \)
- 0
11.
Let cos (α + β) = \(\frac {4}{5}\) and sin (α - β) = \(\frac {5}{13}\), where 0 < α, β < \(\frac {π}{4}\) , then tan 2α=?
\(\frac {20}{7}\)
\(\frac {56}{33}\)
\(\frac {19}{12}\)
\(\frac {25}{16}\)
12.
The number of principal solutions of $\tan 2 \theta = 1$ is- One
- Two
- Three
- Four



Comments