MHT CET PYQs for Transpose of a Matrix with Solutions: Practice MHT CET Previous Year Questions

Shivam Yadav's profile photo

Shivam Yadav

Educational Content Expert | Updated on - Nov 26, 2025

Transpose of a Matrix is an important topic in the Mathematics section in MHT CET exam. Practising this topic will increase your score overall and make your conceptual grip on MHT CET exam stronger.

This article gives you a full set of MHT CET PYQs for Transpose of a Matrix with explanations for effective preparation. Practice of MHT CET Mathematics PYQs including Transpose of a Matrix questions regularly will improve accuracy, speed, and confidence in the MHT CET 2026 exam.

Also Read

MHT CET PYQs for Transpose of a Matrix with Solutions

  • 1.
    The negative of \( (p \land (\sim q)) \lor (\sim p) \) is equivalent to:

      • \( p \land q \)
      • \( p \land (\sim q) \)
      • \( p \land (q \land (\sim p)) \)
      • \( p \lor (q \lor (\sim p)) \)

    • 2.
      If \[ B = \begin{bmatrix} 3 & \alpha & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix} \] is the adjoint of a 3x3 matrix \( A \) and \( |A| = 4 \), then \( \alpha \) is equal to:

        • 1
        • 0
        • -1
        • -2

      • 3.
        The inverse of the matrix \[ \begin{bmatrix} 1 & 0 & 0 \\ 3 & 3 & 3 \\ 5 & 2 & -1 \end{bmatrix} \] is:

          • \[ \frac{-1}{3} \begin{bmatrix} -3 & 0 & 0 \\ 3 & 0 & 0 \\ 9 & 2 & -3 \end{bmatrix} \]
          • \[ \frac{-1}{3} \begin{bmatrix} -3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3 \end{bmatrix} \]
          • \[ \frac{-1}{3} \begin{bmatrix} 3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3 \end{bmatrix} \]
          • \[ \frac{-1}{3} \begin{bmatrix} -3 & 0 & 0 \\ -3 & -1 & 0 \\ -9 & -2 & 3 \end{bmatrix} \]

        • 4.
          The variance of the following probability distribution is:

          \[ \begin{array}{|c|c|} \hline x & P(X) \\ \hline 0 & \frac{9}{16} \\ 1 & \frac{3}{8} \\ 2 & \frac{1}{16} \\ \hline \end{array} \]

            • \(\frac{1}{8}\)
            • \(\frac{5}{8}\)
            • \(\frac{1}{4}\)
            • \(\frac{3}{8}\)

          • 5.
            The converse of \( ((\sim p) \land q) \Rightarrow r \) is:

              • \( ((\sim p) \lor q) \Rightarrow r \)
              • \( (\sim r) \Rightarrow p \land q \)
              • \( (p \lor (\sim q)) \Rightarrow (\sim r) \)
              • \( (\sim r) \Rightarrow ((\sim p) \land q) \)

            • 6.
              If \( A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix} \), then \( A^{-1} \) is:

                • \[ \frac{1}{2} \begin{bmatrix} -1 & -1 & -1 \\ -8 & 6 & -1 \\ 5 & -3 & 1 \end{bmatrix} \]
                • \[ \begin{bmatrix} 1 & -1 & -1 \\ 2 & -3 & 2 \\ -4 & -3 & -1 \end{bmatrix} \]
                • \[ \frac{1}{2} \begin{bmatrix} 1 & -1 & 5 \\ -6 & 3 & -1 \\ 1 & 2 & -1 \end{bmatrix} \]
                • \[ \begin{bmatrix} -1 & -1 & -2 \\ 1 & -6 & 3 \\ 5 & -3 & 1 \end{bmatrix} \]

              Fees Structure

              Structure based on different categories

              CategoriesState
              General800
              Women800
              sc600
              pwd600
              Others600

              In case of any inaccuracy, Notify Us! 

              Comments


              No Comments To Show