MHT CET PYQs for physical world with Solutions: Practice MHT CET Previous Year Questions

Shivam Yadav's profile photo

Shivam Yadav

Educational Content Expert | Updated on - Nov 26, 2025

physical world is an important topic in the Physics section in MHT CET exam. Practising this topic will increase your score overall and make your conceptual grip on MHT CET exam stronger.

This article gives you a full set of MHT CET PYQs for physical world with explanations for effective preparation. Practice of MHT CET Physics PYQs including physical world questions regularly will improve accuracy, speed, and confidence in the MHT CET 2026 exam.

Also Read

MHT CET PYQs for physical world with Solutions

  • 1.
    If y = tan-1 ((2 + 3x) / (3 - 2x)) + tan-1 (4x / (1 + 5x2)), then
    dy/dx =

      • \( \frac{1}{1 + 25x^2} \)
      • \( \frac{5}{1 + 25x^2} \)
      • \( \frac{1}{1 + 5x^2} \)
      • \( \frac{5}{1 + 5x^2} \)

    • 2.
      Evaluate the definite integral: \[ \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + (\cot x)^{101}} = ? \]

        • \( \frac{\pi}{4} \)
        • \( \frac{\pi}{2} \)
        • \( \frac{1}{2} \)
        • 1

      • 3.
        If \( x^y + y^x = a^b \), then \( \frac{dy}{dx} \) at \( x = 1, y = 2 \) is:

          • \( -1 \)
          • \( 1 \)
          • \( 2 \)
          • \( \frac{1}{2} \)

        • 4.
          For all real x, the minimum value of the function f(x) = (1 - x + x^2) / (1 + x + x^2) is:

            • \( \frac{1}{3} \)
            • \( 0 \)
            • \( 3 \)
            • \( 1 \)

          • 5.
            If a(4 + x^2) = x + y - x^3 = a^3 * (dy/dx) at x = 1, then the value of (dy/dx) is:

              • 5
              • 4
              • 3
              • 2

            • 6.
              The particular solution of the differential equation, \[ x y \frac{dy}{dx} = x^2 + 2y^2 \quad \text{when} \quad y(1) = 0 \quad \text{is:} \]

                • \( \frac{x^2 + y^2}{x^3} = 1 \)
                • \( x^2 + y^2 = x \)
                • \( x^2 + 2y^2 = x^4 \) 

                • \( x^2 + y^2 = x^4 \)  
                   


              • 7.
                Evaluate the integral: ∫ log((2 + x)2 + x) dx

                  • \( (2 + x)^{2 + x} + C \)
                  • \( (2 + x) \log((2 + x)^{2 + x}) + C \)
                  • \( (2 + x) \cdot (2 + x)^{x} + C \)
                  • \( (2 + x)(2 + x)^{x} (\log(2 + x) + 1) + C \)

                • 8.
                  The area enclosed between the parabola \( y^2 = 4x \) and the line \( y = 2x - 4 \) is:

                    • \( \frac{17}{3} \) sq. units
                    • 15 sq. units
                    • \( \frac{19}{3} \) sq. units
                    • 9 sq. units

                  Fees Structure

                  Structure based on different categories

                  CategoriesState
                  General800
                  Women800
                  sc600
                  pwd600
                  Others600

                  In case of any inaccuracy, Notify Us! 

                  Comments


                  No Comments To Show