Limits is an important topic in the Mathematics section in MHT CET exam. Practising this topic will increase your score overall and make your conceptual grip on MHT CET exam stronger.
This article gives you a full set of MHT CET PYQs for Limits with explanations for effective preparation. Practice of MHT CET Mathematics PYQs including Limits questions regularly will improve accuracy, speed, and confidence in the MHT CET 2026 exam.
Also Read
MHT CET PYQs for Limits with Solutions
1.
Evaluate \( \int_{0}^{\pi/4} \frac{\cos^2 x}{\cos^2 x + 4 \sin^2 x} \, dx \):- \( \frac{\pi}{4} + \frac{2}{3} \tan^{-1} 2 \)
- \( -\frac{\pi}{3} + \frac{2}{3} \tan^{-1} 3 \)
- \( -\frac{\pi}{12} + \frac{2}{3} \tan^{-1} 2 \)
- \( \frac{\pi}{6} - \frac{2}{3} \tan^{-1} 4 \)
2.
The area of the region \( \{(x, y): 0 \leq y \leq x^2 + 1, \, 0 \leq y \leq x + 1, \, 0 \leq x \leq 2\ \) is:}
- \( \frac{23}{6} \)
- \( 2\sqrt{2} + 5 \)
- \( \frac{9}{2} \)
- None of these
3.
$ \lim\limits _{x\to 1 } \left(log \,ex\right)^{1/log\,x} $ is equal- $ e^{-1} $
- $ e $
- $ e^2 $
- $ 0 $
4.
Marks of 5 students of a group are \( 8, 12, 13, 15, 22 \). Find the variance.- \( 22.1 \)
- \( 23.0 \)
- \( 20.2 \)
- \( 21.2 \)
5.
The limit of \( \lim_{x \to 0} \frac{\sin x}{x} \) is:- \( 1 \)
- \( 0 \)
- \( \infty \)
- Does not exist



Comments