MHT CET PYQs for kinetic theory with Solutions: Practice MHT CET Previous Year Questions

Shivam Yadav's profile photo

Shivam Yadav

Educational Content Expert | Updated on - Nov 26, 2025

kinetic theory is an important topic in the Physics section in MHT CET exam. Practising this topic will increase your score overall and make your conceptual grip on MHT CET exam stronger.

This article gives you a full set of MHT CET PYQs for kinetic theory with explanations for effective preparation. Practice of MHT CET Physics PYQs including kinetic theory questions regularly will improve accuracy, speed, and confidence in the MHT CET 2026 exam.

Also Read

MHT CET PYQs for kinetic theory with Solutions

  • 1.
    $ KE $ per unit volume is $ E $ . The pressure exerted by the gas is given by

      • $ \frac{E}{3} $
      • $ \frac{2E}{3} $
      • $ \frac{3E}{2} $
      • $ \frac{E}{2} $

    • 2.
      Assuming the expression for the pressure exerted by the gas on the walls of the container, it can be shown that pressure is

        • $\left[\frac{1}{3}\right]^{rd}$ kinetic energy per unit volume of a gas
        • $\left[\frac{2}{3}\right]^{rd}$ kinetic energy per unit volume of a gas
        • $\left[\frac{3}{4}\right]^{th}$ kinetic energy per unit volume of a gas
        • $\frac{3}{3} \times$ kinetic energy per unit volume of a gas

      • 3.
        The gases carbon-monoxide $ (CO) $ and nitrogen at the same temperature have kinetic energies $ E_1 $ and $ E_2 $ respectively. Then

          • $ E_1 = E_2 $
          • $ E_1 > E_2 $
          • $ E_1 < E_2 $
          • $ E_1 $ and $ E_2 $ cannot be compared

        • 4.
          To what temperature should the hydrogen at $ 327^{\circ}C $ be cooled at constant pressure, so that the root mean square velocity of its molecules becomes half of its previous value ?

            • $ -123^{\circ} C $
            • $ 123^{\circ} C $
            • $ -100^{\circ} C $
            • $ 0^{\circ} C $

          • 5.
            The equation for the RMS velocity is given as \[ v_{\text{rms}} = \sqrt{\frac{3RT}{M_0}} \] where \( R \) is the gas constant, \( T \) is the temperature, and \( M_0 \) is the molecular mass. If the temperature is increased, find the new RMS velocity \( v_{\text{rms}} \) when the temperature is doubled.}

              • \( \sqrt{3} v_{\text{rms}} \)
              • \( 2 v_{\text{rms}} \)
              • \( \sqrt{2} v_{\text{rms}} \)
              • \( \frac{v_{\text{rms}}}{\sqrt{2}} \)

            • 6.
              If $'C_p'$ and $'C_v'$ are molar specific heats of an ideal gas at constant pressure and volume respectively. If $'\lambda'$ is the ratio of two specific heats and $'R'$ is universal gas constant then $'C_p'$ is equal to

                • $\frac{R\,\gamma}{\gamma-1}$
                • $\gamma\,R$
                • $\frac{1 +\gamma}{1-\gamma}$
                • $\frac{R}{\gamma-1}$

              • 7.
                At which temperature will the r.m.s. velocity of a hydrogen molecule be equal to that of an oxygen molecule at \( 47^\circ \text{C} \)?

                  • \( 80 \, \text{K} \)
                  • \( -73 \, \text{K} \)
                  • \( 4 \, \text{K} \)
                  • \( 20 \, \text{K} \)

                • 8.
                  If \( n \) is the number density and \( d \) is the diameter of the molecule, then the average distance covered by a molecule between two successive collisions (i.e., mean free path) is represented by:

                    • \( \frac{1}{\sqrt{2\pi n d^2}} \)
                    • \( \sqrt{2n \pi d^2} \)
                    • \( \frac{1}{\sqrt{2} n \pi d^2} \)
                    • \( \frac{1}{\sqrt{2n^2\pi^2 d^2}} \)

                  • 9.
                    At constant pressure, which of the following is true ?

                      • $ c \propto \sqrt \rho $
                      • $ c \propto \frac{1}{\rho}$
                      • $ c \propto \rho $
                      • $ c \propto \frac{1}{ \sqrt \rho}$

                    Fees Structure

                    Structure based on different categories

                    CategoriesState
                    General800
                    Women800
                    sc600
                    pwd600
                    Others600

                    In case of any inaccuracy, Notify Us! 

                    Comments


                    No Comments To Show