Integration by Parts is an important topic in the Mathematics section in MHT CET exam. Practising this topic will increase your score overall and make your conceptual grip on MHT CET exam stronger.
This article gives you a full set of MHT CET PYQs for Integration by Parts with explanations for effective preparation. Practice of MHT CET Mathematics PYQs including Integration by Parts questions regularly will improve accuracy, speed, and confidence in the MHT CET 2026 exam.
Also Read
MHT CET PYQs for Integration by Parts with Solutions
1.
The integral of \( \sec^{2/3}x \csc^{4/3}x \, dx \) from \( \pi/6 \) to \( \pi/3 \) is equal to:- \( 3^{5/6} - 3^{2/3} \)
- \( 3^{7/6} - 3^{5/6} \)
- \( 3^{5/3} - 3^{1/3} \)
- \( 3^{4/3} - 3^{1/3} \)
2.
The value of \( \sqrt{3} \csc 20^\circ - \sec 20^\circ \) is:- 4
- 2
- 3
- 1
3.
The value of the integral \( \int_0^1 \frac{\sqrt{1 - x}}{\sqrt{1 + x}} \, dx \) is:- \( \frac{\pi}{2} + 1 \)
- \( \frac{\pi}{2} - 1 \)
- \( 1 \)
- \( -1 \)
4.
The integral \( \int \frac{\csc x}{\cos^2\left(1 + \log \tan \frac{x}{2}\right)} \, dx \) is equal to:- \( \sin^2(1 + \log \tan \frac{x}{2}) + C \)
- \( \tan(1 + \log \tan \frac{x}{2}) + C \)
- \( -\tan(1 + \log \tan \frac{x}{2}) + C \)
- \( \sec^2(1 + \log \tan \frac{x}{2}) + C \)
5.
The value of the integral \( \int_0^2 |2x - 3| \, dx \) is:- \( \frac{3}{10} \)
- \( \frac{5}{2} \)
- \( \frac{10}{3} \)
- \( \frac{2}{5} \)



Comments