MHT CET PYQs for Integrals of Some Particular Functions with Solutions: Practice MHT CET Previous Year Questions

Shivam Yadav's profile photo

Shivam Yadav

Educational Content Expert | Updated on - Nov 26, 2025

Integrals of Some Particular Functions is an important topic in the Mathematics section in MHT CET exam. Practising this topic will increase your score overall and make your conceptual grip on MHT CET exam stronger.

This article gives you a full set of MHT CET PYQs for Integrals of Some Particular Functions with explanations for effective preparation. Practice of MHT CET Mathematics PYQs including Integrals of Some Particular Functions questions regularly will improve accuracy, speed, and confidence in the MHT CET 2026 exam.

Also Read

MHT CET PYQs for Integrals of Some Particular Functions with Solutions

  • 1.
    $\int\left(\frac{4e^{2}-25}{2e^{x}-5}\right)dx = Ax+B \,\,log |2e^{x}-5|+c$ then

      • $ A = 5$, and $B = 3$
      • $ A = 5$, and $B = - 3 $
      • $A = - 5$, and $B = 3$
      • $ A = - 5$, and $B = - 3$

    • 2.
      $\int \left(\frac{\left(x^{2}+2\right)a^{\left(x +tan^{-1}x\right)}}{x^{2}+1}\right)dx = $

        • $log a.a^{x+tan^{-1}x}+c$
        • $\frac{\left(x+tan^{-1}x\right)}{log\,a}+c$
        • $\frac{a^{x+tan^{-1}x}}{log\,a}+c$
        • $log \,a(x + tan^{-1}x) + c$

      • 3.
        Evaluate the integral: \( \int \sin^5 x \, dx \)

          • \( -\frac{1}{5} \cos x (5 - 10 \sin^2 x + \sin^4 x) + C \)
          • \( -\cos x + \frac{\cos^3 x}{3} - \frac{\cos^5 x}{5} + C \)
          • \( \frac{1}{5} \sin^5 x + C \)
          • \( \int \sin^5 x \, dx = \int \sin^3 x \cdot \sin^2 x \, dx \)

        • 4.
          If $\int \sqrt{\frac{x - 5}{x -7}} dx = A \sqrt{x^2 - 12 x + 35 } + \log \, | x - 6 + \sqrt{x^2 - 12x + 35} | + C $ then $A = $

            • $-1$
            • $\frac{1}{2} $
            • $ - \frac{1}{2} $
            • $1$

          • 5.
            $\int \frac{1}{\sqrt{8+2x-x^{2}}} dx$ is equal to

              • $\frac{1}{3} sin^{-1} \left(\frac{x-1}{3}\right) +c$
              • $sin^{-1} \left(\frac{x+1}{3}\right) +c$
              • $\frac{1}{3}sin^{-1} \left(\frac{x+1}{3}\right) +c$
              • $sin^{-1} \left(\frac{x-1}{3}\right) +c$

            • 6.
              If $\int^{\pi/2}_{0} \log\cos x dx =\frac{\pi}{2} \log\left(\frac{1}{2}\right)$ then $ \int^{\pi/2}_{0} \log\sec x dx = $

                • $\frac{\pi}{2} \log ( 1/2) $
                • $ 1 - \frac{\pi}{2} \log ( 1/2) $
                • $ 1 + \frac{\pi}{2} \log ( 1/2) $
                • $\frac{\pi}{2} \log \, 2 $

              • 7.
                $\int^1_0 x \, \tan^{-1} x\,dx = $

                  • $\frac{\pi}{4} + \frac{1}{2}$
                  • $\frac{\pi}{4} - \frac{1}{2}$
                  • $\frac{1}{2} - \frac{\pi}{4} $
                  • $ - \frac{\pi}{4} - \frac{1}{2}$

                • 8.
                  If $\int\frac{f\left(x\right)}{log \left(sin\,x\right)}dx = log\left[log\,sin\,x\right]+c$ then $f\left(x\right)=$

                    • $cot\,x$
                    • $tan\,x$
                    • $sec\,x$
                    • $cosec\,x$

                  Fees Structure

                  Structure based on different categories

                  CategoriesState
                  General800
                  Women800
                  sc600
                  pwd600
                  Others600

                  In case of any inaccuracy, Notify Us! 

                  Comments


                  No Comments To Show