Functions is an important topic in the Mathematics section in MHT CET exam. Practising this topic will increase your score overall and make your conceptual grip on MHT CET exam stronger.
This article gives you a full set of MHT CET PYQs for Functions with explanations for effective preparation. Practice of MHT CET Mathematics PYQs including Functions questions regularly will improve accuracy, speed, and confidence in the MHT CET 2026 exam.
Also Read
MHT CET PYQs for Functions with Solutions
1.
If $f : R - \{2\} \to R$ is a function defined by $f(x) = \frac{x^2 - 4}{x - 2}$ , then its range is- R
- R - {2}
- R - {4}
- R - {-2, 2}
2.
If \( f(x) = |x| - |1| \), then points where \( f(x) \) is not differentiable, is/are:- \( 0, 1 \)
- \( \pm 1, 0 \)
- \( 0 \)
- \( 1 \text{ only} \)
3.
If $ f(x) = 2x^2 - 3x + 5 $, find $ f(3) $.- \( 16 \)
- \( 18 \)
- \( 20 \)
- \( 19 \)
4.
Find the function $ f(x_1, x_2, x_3) $ satisfying $ f(x_1, x_2, x_3) = 1 $ at $ x_1 = 1, x_2 = x_3 = 0 $ .- $ x_{1}' \cdot x_{2} $
- $ x_{1} \cdot x_{2}' $
- $ \left(x_{1} + x_{2} +x_{3}\right)' \cdot x_{2} $
- $ \left(x_{1}' +x_{3}\right) \cdot x_{3} $
5.
If \( \mathbf{a} = \mathbf{i} + 2\mathbf{j} - 3\mathbf{k} \) and \( \mathbf{b} = 2\mathbf{i} - 3\mathbf{j} - 5\mathbf{k} \), then:- \( |\mathbf{a} - \mathbf{b}|>|\mathbf{a}| + |\mathbf{b}| \)
- \( |\mathbf{a} - \mathbf{b}|>|\mathbf{b}| - |\mathbf{a}| \)
- \( |\mathbf{a} + \mathbf{b}|<|\mathbf{a} - \mathbf{b}| \)
- \( |\mathbf{a}| - |\mathbf{b}|>|\mathbf{a} - \mathbf{b}| \)
6.
If $ f(x) = 3x^2 + 5x - 7 $, find $ f(2) $.- \( 9 \)
- \( 15 \)
- \( 7 \)
- \( 5 \)
7.
If \( f(x) = 3x + 6 \), \( g(x) = 4x + k \), and \( f \circ g(x) = g \circ f(x) \), then find \( k \):- 3
- 6
- 9
- 12
8.
The point on the line \( 4x - y - 2 = 0 \) which is equidistant from the points \( (-5, 6) \) and \( (3, 2) \) is- \( (2, 6) \)
- \( (4, 14) \)
- \( (1, 2) \)
- \( (3, 10) \)



Comments