MHT CET PYQs for Differentiability with Solutions: Practice MHT CET Previous Year Questions

Shivam Yadav's profile photo

Shivam Yadav

Educational Content Expert | Updated on - Nov 26, 2025

Differentiability is an important topic in the Mathematics section in MHT CET exam. Practising this topic will increase your score overall and make your conceptual grip on MHT CET exam stronger.

This article gives you a full set of MHT CET PYQs for Differentiability with explanations for effective preparation. Practice of MHT CET Mathematics PYQs including Differentiability questions regularly will improve accuracy, speed, and confidence in the MHT CET 2026 exam.

Also Read

MHT CET PYQs for Differentiability with Solutions

  • 1.
    Derivative of $log \left(sec\,\theta +tan \,\theta\right) $ with respect to $sec\, \theta$ at $\theta = \pi/4$ is

      • $0$
      • $1$
      • $\frac{1}{\sqrt2}$
      • $\sqrt2$

    • 2.
      If the function \[ f(x) = \begin{cases} [ tan (\frac {\pi}{4}+x)]^{1/x} & \quad for\, x \neq 0\\ K \,\,\,\,\,\,\,\,\,\text{if } x =0 \end{cases} \] is continuous at $x = 0$, then $K = ?$

        • $e$
        • $e^{-1}$
        • $e^2$
        • $e^{-2}$

      • 3.
        If Rolle�s theorem for $f\left(x\right)= e^{x} \left(sinx - cosx\right)$ is verified on $[\pi/4$, $5 \pi/4]$, then the value of $c$ is

          • $\pi/3$
          • $\pi/2$
          • $3\pi/4$
          • $\pi$

        • 4.
          The Boolean expression \( (\sim(p \land q)) \lor q \) is equivalent to:

            • \( q \to (p \land q) \)
            • \( p \to q \)
            • \( p \sim(p \to q) \)
            • \( p \to (p \lor q) \)

          • 5.
            \( \int_{\pi/11}^{9\pi/22} \frac{dx}{1 + \sqrt{\tan x}} \) is equal to:

              • \( \frac{\pi}{4} \)
              • \( \frac{\pi}{22} \)
              • \( \frac{\pi}{11} \)
              • \( \frac{7\pi}{44} \)

            • 6.
              For what value of $k$, the function defined by $ f(x) = \begin{cases} \frac{log(1+2x)sin\,x^\circ}{x^2} & \text{for } x \ge \text {0}\\ k & \text{for } x = \text{ 0} \end{cases}$ is continuous at $x = 0$ ?

                • $2$
                • $\frac{1}{2}$
                • $\frac{\pi}{90}$
                • $\frac{90}{\pi}$

              • 7.
                Find the derivative of the function \( f(x) = 3x^2 - 5x + 7 \).

                  • \( 6x - 5 \)
                  • \( 6x + 5 \)
                  • \( 3x^2 + 5 \)
                  • \( 3x^2 - 5 \)

                Fees Structure

                Structure based on different categories

                CategoriesState
                General800
                Women800
                sc600
                pwd600
                Others600

                In case of any inaccuracy, Notify Us! 

                Comments


                No Comments To Show