Differentiability is an important topic in the Mathematics section in MHT CET exam. Practising this topic will increase your score overall and make your conceptual grip on MHT CET exam stronger.
This article gives you a full set of MHT CET PYQs for Differentiability with explanations for effective preparation. Practice of MHT CET Mathematics PYQs including Differentiability questions regularly will improve accuracy, speed, and confidence in the MHT CET 2026 exam.
Also Read
MHT CET PYQs for Differentiability with Solutions
1.
Derivative of $log \left(sec\,\theta +tan \,\theta\right) $ with respect to $sec\, \theta$ at $\theta = \pi/4$ is- $0$
- $1$
- $\frac{1}{\sqrt2}$
- $\sqrt2$
2.
If the function \[ f(x) = \begin{cases} [ tan (\frac {\pi}{4}+x)]^{1/x} & \quad for\, x \neq 0\\ K \,\,\,\,\,\,\,\,\,\text{if } x =0 \end{cases} \] is continuous at $x = 0$, then $K = ?$- $e$
- $e^{-1}$
- $e^2$
- $e^{-2}$
3.
If Rolle�s theorem for $f\left(x\right)= e^{x} \left(sinx - cosx\right)$ is verified on $[\pi/4$, $5 \pi/4]$, then the value of $c$ is- $\pi/3$
- $\pi/2$
- $3\pi/4$
- $\pi$
4.
The Boolean expression \( (\sim(p \land q)) \lor q \) is equivalent to:- \( q \to (p \land q) \)
- \( p \to q \)
- \( p \sim(p \to q) \)
- \( p \to (p \lor q) \)
5.
\( \int_{\pi/11}^{9\pi/22} \frac{dx}{1 + \sqrt{\tan x}} \) is equal to:- \( \frac{\pi}{4} \)
- \( \frac{\pi}{22} \)
- \( \frac{\pi}{11} \)
- \( \frac{7\pi}{44} \)
6.
For what value of $k$, the function defined by $ f(x) = \begin{cases} \frac{log(1+2x)sin\,x^\circ}{x^2} & \text{for } x \ge \text {0}\\ k & \text{for } x = \text{ 0} \end{cases}$ is continuous at $x = 0$ ?- $2$
- $\frac{1}{2}$
- $\frac{\pi}{90}$
- $\frac{90}{\pi}$
7.
Find the derivative of the function \( f(x) = 3x^2 - 5x + 7 \).- \( 6x - 5 \)
- \( 6x + 5 \)
- \( 3x^2 + 5 \)
- \( 3x^2 - 5 \)



Comments