Determinants is an important topic in the Mathematics section in MHT CET exam. Practising this topic will increase your score overall and make your conceptual grip on MHT CET exam stronger.
This article gives you a full set of MHT CET PYQs for Determinants with explanations for effective preparation. Practice of MHT CET Mathematics PYQs including Determinants questions regularly will improve accuracy, speed, and confidence in the MHT CET 2026 exam.
Also Read
MHT CET PYQs for Determinants with Solutions
1.
If \( f(x) \) is differentiable at \( x = 1 \) and \[ \lim_{h \to 0} \frac{1}{h} f(1 + h) = 5, \] then \( f'(1) \) is equal to:- \( 6 \)
- \( 5 \)
- \( 4 \)
- \( 3 \)
2.
If Matrix $A = \begin{bmatrix}1&2\\ 4&3\end{bmatrix}$ such that $Ax = I$, then $X = $_______- $\frac{1}{5}\begin{bmatrix}1&3\\ 2&-1\end{bmatrix}$
- $\frac{1}{5}\begin{bmatrix}4&2\\ 4&-1\end{bmatrix}$
- $\frac{1}{5}\begin{bmatrix}-3&2\\ 4&-1\end{bmatrix}$
- $\frac{1}{5}\begin{bmatrix}-1&2\\ -1&4\end{bmatrix}$
3.
Matrix $A = \begin{bmatrix}1&2&3\\ 1&1&5\\ 2&4&7\end{bmatrix}$then the value of $a_{31} A_{31} + a_{32} A_{32} + a_{33 } + A_{33} $ is- 1
- 13
- -1
- -13
4.
If \( A = \begin{bmatrix} 2 & 1
3 & 4 \end{bmatrix} \), then the determinant of matrix \( A \) is:- \( 4 \)
- \( 5 \)
- \( 7 \)
- \( 10 \)
5.
Find the value of the determinant \( \begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} \).- 2
- 1
- 0
- -1
6.
Evaluate the determinant of the matrix: \[ \left| \begin{array}{cc} 1 & \tan x
-\tan x & 1 \end{array} \right| \]- \( 1 - \tan^2 x \)
- \( 1 + \tan^2 x \)
- \( \sec^2 x \)
- \( 0 \)
7.
If $A=\begin{bmatrix}1&1&0\\ 2&1&5\\ 1&2&1\end{bmatrix}$, then $a_{11}A_{21} +a_{12}A_{22}+a_{13}A_{23} $ is equal to- $1$
- $0$
- $-1$
- $2$



Comments