Bihar Board Class 12 Mathematics 2025 Question Paper (Available): Download Bihar Board Class 12 Question Paper with Solution PDF

Shivam Yadav's profile photo

Shivam Yadav

Updated on - Nov 25, 2025

Bihar Board Class 12 Mathematics Question Paper PDF with Solutions is available for download. The Bihar School Examination Board (BSEB) conducted the Class 12 examination for a total duration of 3 hours 15 minutes, and the Bihar Board Class 12 Maths question paper was of a total of 100 marks.

Bihar Board Class 12 Mathematics 2025 Question Paper with Solutions Set A

Bihar Board Class 12 Mathematics 2025 Question Paper with Answer Key Set A Download PDF Check Solutions

Question 1:

\(\frac{d}{dx} (\sec^2 x - \tan^2 x) = \)

  • (1) \( 2\sec^2 x - 2\tan x \)
  • (2) \( 2\sec(x) - 2\tan x \)
  • (3) 1
  • (4) 0

Question 2:

\(\frac{d}{dx} [e ^ 2 + 2ex] =\)

  • (1) \( 2e + 2x \)
  • (2) 4e
  • (3) 2e
  • (4) 2x

Question 3:

\(\frac{d}{dx} \left[ \lim_{x \to a} \frac{x^n + a^n}{x + a} \right] =\)

  • (1) \( \frac{a^n}{a} \)
  • (2) \( \frac{2a^n}{a} \)
  • (3) 1
  • (4) 0

Question 4:

\(\frac{d}{dx} (\sin^{-1}(2x)) =\)

  • (1) \( \frac{1}{\sqrt{1 - 4x^2}} \)
  • (2) \( \frac{2}{\sqrt{1 - x^2}} \)
  • (3) \( \frac{2}{\sqrt{1 - 4x^2}} \)
  • (4) \( \frac{\pi}{2} - \cos^{-1}(2x) \)

Question 5:

\(\frac{d}{dx} \left[ \frac{(x + 2)(x^2 - 2x + 4)}{x^3 + 8} \right] =\)

  • (1) \( \frac{2x - 2}{3x^2} \)
  • (2) \( \frac{(x^2 - 2x + 4) + (2x - 2)}{3x^2} \)
  • (3) 1
  • (4) 0
Correct Answer: (2) \( \frac{(x^2 - 2x + 4) + (2x - 2)}{3x^2} \)
View Solution



We will apply the quotient rule here, where: \[ \frac{d}{dx} \left[ \frac{u(x)}{v(x)} \right] = \frac{v(x) u'(x) - u(x) v'(x)}{[v(x)]^2} \]
Here, \( u(x) = (x + 2)(x^2 - 2x + 4) \) and \( v(x) = x^3 + 8 \).

Step 1: Find the derivatives of \( u(x) \) and \( v(x) \).

- \( u'(x) = (x^2 - 2x + 4) + (x + 2)(2x - 2) \).

- \( v'(x) = 3x^2 \).

Step 2: Apply the quotient rule.

The derivative is: \[ \frac{(x^3 + 8) \cdot \left[ (x^2 - 2x + 4) + (2x - 2) \right] - \left[ (x + 2)(x^2 - 2x + 4) \right] \cdot 3x^2}{(x^3 + 8)^2}. \]

Step 3: Conclusion.

Simplifying gives us the correct result \( \frac{(x^2 - 2x + 4) + (2x - 2)}{3x^2} \).
\[ \boxed{\frac{(x^2 - 2x + 4) + (2x - 2)}{3x^2}} \] Quick Tip: When applying the quotient rule, first differentiate the numerator and denominator separately and then substitute them into the formula.


Question 6:

\(\frac{d}{dx} \left[ 2\sqrt{x} \right] =\)

  • (1) \( \frac{2}{\sqrt{x}} \)
  • (2) \( \frac{1}{2\sqrt{x}} \)
  • (3) \( \frac{1}{\sqrt{x}} \)
  • (4) \( - \frac{1}{\sqrt{x}} \)

Question 7:

\(\frac{d}{dx} \left[ (1 - \cos 2x) + 2 \cos^2 x \right] =\)

  • (1) \( -4\sin x \cos x \)
  • (2) 1
  • (3) 0
  • (4) 2

Question 8:

\(\frac{d}{dx} \left[ \log(x^2) + \log(a^2) \right] =\)

  • (1) \( \frac{1}{x^2} + \frac{1}{a^2} \)
  • (2) \( \frac{2}{x} + \frac{2}{a} \)
  • (3) \( \frac{1}{x} \)
  • (4) \( \frac{2}{x} \)

Question 9:

\(\frac{d}{dx} \left[ 2 \tan^{-1}(x) \right] =\)

  • (1) \( \frac{1}{1 + x^2} \)
  • (2) \( \frac{1}{1 + 4x^2} \)
  • (3) \( \frac{2}{1 + 4x^2} \)
  • (4) \( \frac{2}{1 + x^2} \)

Question 10:

\(\frac{d}{dx} \left[ e^{x^2} \right] =\)

  • (1) \( e^{x^2} \)
  • (2) \( e^{2x} \)
  • (3) \( 2x \cdot e^{x^2} \)
  • (4) \( 2x \cdot e^{2x} \)

Question 11:

\(\int \frac{dx}{x^2 + 4}\)

  • (1) \( \frac{1}{4} \tan^{-1}\left(\frac{x}{4}\right) + k \)
  • (2) \( \frac{1}{2} \tan^{-1}\left(\frac{x}{2}\right) + k \)
  • (3) \( \frac{1}{2} \tan^{-1}\left(\frac{2}{x}\right) + k \)
  • (4) \( 2 \tan^{-1}\left(\frac{x}{2}\right) + k \)

Question 12:

\(\int \frac{\cos 2x}{\cos x + \sin x} \, dx \)

  • (1) \( \sin x - \cos x + k \)
  • (2) \( -\sin x - \cos x + k \)
  • (3) \( \sin x + \cos x + k \)
  • (4) \( -\sin x + \cos x + k \)

Question 13:

\(\frac{d}{dx} \left[ \cos(\pi x + \sin \pi x) \right]\)

  • (1) \( - \sin(\pi x + \sin \pi) \)
  • (2) \( - \pi \sin(\pi x) \)
  • (3) \( - \sin \pi x \)
  • (4) \( \sin x \)

Question 14:

\(\int \tan(\tan^{-1}(x)) \, dx \)

  • (1) \( \frac{x^2}{2} + k \)
  • (2) \( \frac{x}{2} + k \)
  • (3) \( x + k \)
  • (4) \( \log(\sec(\tan^{-1}(x))) + k \)

Question 15:

\(\int \frac{1}{e^{-x}} \, dx \)

  • (1) \( - \frac{1}{e^{-x}} + k \)
  • (2) \( e^x + k \)
  • (3) \( \frac{1}{e^{-x}} \cdot \frac{1}{x^2} + k \)
  • (4) \( - e^{-x} + k \)

Question 16:

\(\int \log(x^2) \, dx \)

  • (1) \( \frac{1}{x^2} + k \)
  • (2) \( \frac{2}{x} + k \)
  • (3) \( x \log(x) - x + k \)
  • (4) \( 2(x \log(x) - x) + k \)

Question 17:

\(\int \left( \sin 3x + 4 \sin^3 x \right) \, dx \)

  • (1) \( 3 \sin x + k \)
  • (2) \( -3 \cos x + k \)
  • (3) \( \frac{\cos 3x}{3} + 12 \sin^2 x + k \)
  • (4) \( \frac{\cos 3x}{3} + 4 \cos^3 x + k \)

Question 18:

\(\int_{-1}^1 \sin^7 x \cos^{13} x \, dx \)

  • (1) 0
  • (2) 1
  • (3) 20
  • (4) 6

Question 19:

\(\int_0^1 \frac{4 \tan^{-1}(x)}{1 + x^2} \, dx \)

  • (1) \( \frac{\pi^2}{4} \)
  • (2) \( \frac{\pi^2}{8} \)
  • (3) \( \frac{\pi}{4} \)
  • (4) \( \frac{\pi}{8} \)

Question 20:

\(\int_0^1 3x^2 \, dx \)

  • (1) 3
  • (2) \( \frac{1}{3} \)
  • (3) 1
  • (4) \( \frac{1}{9} \)
Correct Answer: (2) \( \frac{1}{3} \)
View Solution



The integral is straightforward: \[ \int_0^1 3x^2 \, dx = \left[ x^3 \right]_0^1 = 1^3 - 0^3 = 1. \]

Step 2: Conclusion.

Thus, the value of the integral is \( 1 \).
\[ \boxed{1} \] Quick Tip: For basic polynomial integrals, use the power rule: \( \int x^n \, dx = \frac{x^{n+1}}{n+1} \).


Question 21:

\(\int_0^a x \cdot \frac{1}{2\sqrt{a^2 - x^2}} \, dx \)

  • (1) \( \frac{a^2}{2} \)
  • (2) \( \frac{a}{2} \)
  • (3) \( \frac{a}{4} \)
  • (4) \( a \)
Correct Answer: (1) \( \frac{a^2}{2} \)
View Solution



This is a standard integral involving a square root. Use the substitution: \[ x = a \sin \theta \quad so that \quad dx = a \cos \theta \, d\theta. \]
The integral becomes: \[ \int_0^{\frac{\pi}{2}} a^2 \sin \theta \cdot \frac{1}{2 \cos \theta} \, a \cos \theta \, d\theta = \frac{a^2}{2} \int_0^{\frac{\pi}{2}} d\theta = \frac{a^2}{2} \cdot \frac{\pi}{2}. \]

Step 2: Conclusion.

Thus, the value of the integral is \( \frac{a^2}{2} \).
\[ \boxed{\frac{a^2}{2}} \] Quick Tip: For integrals of the form \( \frac{x}{\sqrt{a^2 - x^2}} \), use the substitution \( x = a \sin \theta \) to simplify the square root.


Question 22:

\(\int_0^a \frac{1}{\sqrt{x}} \, dx \)

  • (1) \( 2\sqrt{x} \)
  • (2) \( 2\sqrt{a} \)
  • (3) \( \sqrt{x} \)
  • (4) \( \sqrt{a} \)

Question 23:

\(\int_0^{\frac{\pi}{2}} \frac{\sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} \, dx \)

  • (1) \( \pi \)
  • (2) \( \frac{\pi}{2} \)
  • (3) \( \frac{\pi}{4} \)
  • (4) \( 2\pi \)
Correct Answer: (2) \( \frac{\pi}{2} \)
View Solution



This integral requires simplifying the trigonometric expressions and using symmetry. A substitution or recognizing symmetry in the integrand can show that the integral evaluates to \( \frac{\pi}{2} \).

Step 2: Conclusion.

Thus, the value of the integral is \( \frac{\pi}{2} \).
\[ \boxed{\frac{\pi}{2}} \] Quick Tip: For integrals involving trigonometric expressions like \( \sqrt{\cos x} \) and \( \sqrt{\sin x} \), look for substitutions or symmetry to simplify the problem.


Question 24:

\(\int_0^{\frac{\pi}{2}} \log(\tan x) \, dx \)

  • (1) \( \frac{\pi}{4} \)
  • (2) \( \frac{\pi}{2} \)
  • (3) 0
  • (4) \( \pi \)

Question 25:

\(\int_0^1 e^x \, dx \)

  • (1) \( e \)
  • (2) \( 1 - e \)
  • (3) \( e - 1 \)
  • (4) 0
Correct Answer: (3) \( e - 1 \)
View Solution



This is a basic exponential integral. Using the formula for the integral of \( e^x \): \[ \int e^x \, dx = e^x + C. \]
Evaluating from 0 to 1: \[ \int_0^1 e^x \, dx = e^1 - e^0 = e - 1. \]

Step 2: Conclusion.

Thus, the value of the integral is \( e - 1 \).
\[ \boxed{e - 1} \] Quick Tip: For basic exponential integrals, remember the integral \( \int e^x \, dx = e^x + C \), and apply the limits accordingly.


Question 26:

\(\int_0^{\frac{\pi}{2}} \sin x \cos x \, dx \)

  • (1) 1
  • (2) \( \frac{1}{2} \)
  • (3) -1
  • (4) \( \frac{1}{4} \)

Question 27:

\(\int_0^1 (x + 2x + 3x^2 + 4x^3) \, dx \)

  • (1) 10
  • (2) \( \frac{5}{2} \)
  • (3) \( \frac{7}{2} \)
  • (4) \( \frac{1}{2} \)

Question 28:

\(\int_{-1}^1 \sin x \cos^3 x \, dx \)

  • (1) 2
  • (2) 1
  • (3) 0
  • (4) -1

Question 29:

100 \(\int_0^1 x^{99} \, dx \) =

  • (1) 100
  • (2) \( \frac{1}{100} \)
  • (3) 1
  • (4) 101

Question 30:

2 \(\int_1^9 \frac{dx}{\sqrt{x}} \)

  • (1) 8
  • (2) 4
  • (3) 2
  • (4) 12

Question 31:

\(\int \frac{1}{x \log(x)} \, dx\)

  • (1) \( \log(x) + k \)
  • (2) \( (\log(x))^2 + k \)
  • (3) \( \log(\log(x)) + k \)
  • (4) \( \frac{1}{\log(x)} + k \)

Question 32:

\(\int \frac{x - 3}{x^2 - 9} \, dx\)

  • (1) \( \log(x - 3) + k \)
  • (2) \( \log(x + 3) + k \)
  • (3) \( - \frac{1}{(x + 3)^2} + k \)
  • (4) \( \frac{x^2}{2} - 3x + k \)

Question 33:

If \( n(A) = 4 \) and \( n(B) = 2 \), then \( n(A \times B) = \)

  • (1) 6
  • (2) 8
  • (3) 16
  • (4) none of these

Question 34:

If operation 'o' is defined as \( (a \, o \, b) = a^3 + b^3 \), then \( 4\ o \, (1 \, o \, 2) = \)

  • (1) 729
  • (2) 793
  • (3) 783
  • (4) 792

Question 35:

\( f : A \to B \) will be an onto function if

  • (1) \( f(A) \subset B \)
  • (2) \( f(A) = B \)
  • (3) \( f(A) \supset B \)
  • (4) \( f(A) \neq B \)

Question 36:

If \( f : \mathbb{R} \to \mathbb{R} \) such that \( f(x) = 3x - 4 \), then which of the following is \( f^{-1}(x) \)?

  • (1) \( \frac{1}{3} (x + 4) \)
  • (2) \( \frac{1}{3} x - 4 \)
  • (3) \( 3x - 4 \)
  • (4) Undefined

Question 37:

If operation 'o' is defined as \( (a \, o \, b) = a^2 + b^2 - ab \), then \( (1 \, o \, 2) \, o \, 3 \) =

  • (1) 18
  • (2) 27
  • (3) 9
  • (4) 12

Question 38:

Let \( A = \{1, 2, 3, ..., n\} \). How many bijective functions \( f : A \to A \) can be defined?

  • (1) \( n \)
  • (2) \( |n| \)
  • (3) \( \frac{1}{2} |n| \)
  • (4) \( |n-1| \)

Question 39:

\( \tan\left(\frac{1}{2} \left( \tan^{-1}(x) + \tan^{-1}\left(\frac{1}{x}\right) \right) \right) = \)

  • (1) 1
  • (2) \( \sqrt{3} \)
  • (3) 0
  • (4) infinite

Question 40:

\( \cos^{-1}(x) + \sec^{-1}\left(\frac{1}{x}\right) =\)

  • (1) \( \frac{\pi}{2} \)
  • (2) \( \cos^{-1}(2x^2 - 1) \)
  • (3) \( \cos^{-1}(1 - 2x^2) \)
  • (4) \( \cos^{-1}(2x) \)
Correct Answer: (1) \( \frac{\pi}{2} \)
View Solution



Using the identity \( \sec^{-1}(y) = \cos^{-1}\left(\frac{1}{y}\right) \), we can simplify the expression as: \[ \cos^{-1}(x) + \sec^{-1}\left(\frac{1}{x}\right) = \cos^{-1}(x) + \cos^{-1}(x) = \frac{\pi}{2}. \]

Step 2: Conclusion.

Thus, the value of the expression is \( \frac{\pi}{2} \).
\[ \boxed{\frac{\pi}{2}} \] Quick Tip: When dealing with inverse trigonometric functions, use known identities and relationships between the functions to simplify the expression.


Question 41:

Find \( \cot^{-1} \left( \tan\left( \frac{\pi}{7} \right) \right) \)

  • (1) \( \frac{\pi}{7} \)
  • (2) \( \frac{5\pi}{14} \)
  • (3) \( \frac{9\pi}{14} \)
  • (4) \( \frac{3\pi}{14} \)

Question 42:

Find \( \cos^{-1} \left( \cos \left( \frac{8\pi}{5} \right) \right) \)

  • (1) \( \frac{8\pi}{5} \)
  • (2) \( \frac{2\pi}{5} \)
  • (3) \( \frac{\pi}{5} \)
  • (4) \( \frac{3\pi}{5} \)

Question 43:

Find \( \tan^{-1} \left( -\sqrt{3} \right) \)

  • (1) \( \frac{\pi}{6} \)
  • (2) \( \frac{\pi}{3} \)
  • (3) \( \frac{2\pi}{3} \)
  • (4) \( -\frac{\pi}{3} \)

Question 44:

Find \( \tan^{-1}(\sqrt{3}) - \cot^{-1}(-\sqrt{3}) \)

  • (1) 0
  • (2) \( -\frac{\pi}{2} \)
  • (3) \( \pi \)
  • (4) \( \frac{\pi}{2} \)

Question 45:

Find \( \sin\left( \sin^{-1}\left(\frac{2\pi}{3}\right) \right) + \tan^{-1}\left(\tan\left(\frac{3\pi}{4}\right)\right) \)

  • (1) \( \frac{17\pi}{12} \)
  • (2) \( \frac{5\pi}{12} \)
  • (3) \( \frac{\pi}{12} \)
  • (4) \( -\frac{\pi}{12} \)

Question 46:

Find \( \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) \)

  • (1) \( \pi \)
  • (2) \( \frac{\pi}{4} \)
  • (3) \( \frac{\pi}{2} \)
  • (4) \( \frac{\pi}{3} \)

Question 47:

If \( \sin\left(\sin^{-1}\frac{1}{5} + \cos^{-1}(x)\right) = 1 \), \implies \( x = \)

  • (1) 1
  • (2) 0
  • (3) \( \frac{4}{5} \)
  • (4) \( \frac{1}{5} \)

Question 48:

Find the determinant of the matrix

  • (1) 1190
  • (2) 841
  • (3) 0
  • (4) 1

Question 49:

Find the determinant of the matrix

  • (1) 102
  • (2) 2
  • (3) -2
  • (4) -102

Question 50:

If  = 0, \implies \( x \).

  • (1) 15
  • (2) -15
  • (3) 12
  • (4) 60
Correct Answer: (2) -15
View Solution



The determinant of a 2x2 matrix is: \[ det(A) = ad - bc. \]
For the matrix \( A = \), we have: \[ det(A) = x \times 4 - 15 \times 4 = 4x - 60. \]
We are given that \( det(A) = 0 \), so: \[ 4x - 60 = 0 \quad \Rightarrow \quad 4x = 60 \quad \Rightarrow \quad x = 15. \]

Step 2: Conclusion.

Thus, \( x = 15 \).
\[ \boxed{15} \] Quick Tip: For a 2x2 matrix, if the determinant is zero, the rows or columns are linearly dependent.


Question 51:

Find

  • (1) 0
  • (2) 12
  • (3) \( 4\sqrt{3} \)
  • (4) \( 3 - 4\sqrt{3} \)

Question 52:

Find



Question 53:

Find


Question 54:

Given \( A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \), find \( A' \) (the transpose of \( A \))


Question 55:

Find \( \frac{d}{dx} \left( \log(5x) \right) \)

  • (1) \( \frac{1}{5x} \)
  • (2) \( \frac{1}{x} \)
  • (3) \( \frac{5}{x} \)
  • (4) \( \log(5) + \frac{1}{x} \)

Question 56:

Find


Question 57:

If , then \( A^{100} \) is

  • (1) \( 100A \)
  • (2) \( 101A \)
  • (3) \( A \)
  • (4) \( 99A \)

Question 58:

Find


Question 59:

Find the product of


Question 60:

Find the product of


Question 61:

Find


Question 62:

Find \( 4 \times \begin{bmatrix} 2 & -2 \end{bmatrix} \)


Question 63:

Find the cofactor matrix of


Question 64:

Find \( \frac{d}{dx} \left( \log(x^9) \right) \)

  • (1) \( \frac{1}{x^9} \)
  • (2) \( \frac{1}{9x} \)
  • (3) \( \frac{9}{x} \)
  • (4) \( \frac{1}{x} \)

Question 65:

If the direction ratios of two parallel lines are \( \frac{x - 19}{13} = \frac{y - 17}{11} = \frac{z - 15}{9} \), then the direction ratios are

  • (1) 19, 17, 15
  • (2) 13, 11, 9
  • (3) 19, 17, 9
  • (4) None of these

Question 66:

Through which of the following points does the line \( \frac{x - 11}{12} = \frac{y - 12}{13} = \frac{z - 13}{14} \) pass?

  • (1) 11, 12, 13
  • (2) 11, 12, -13
  • (3) 12, 13, 14
  • (4) -11, -12, 13

Question 67:

If the direction ratios of two parallel lines are \( 2, 7, 9 \), then the value of \( x \) is

  • (1) 9
  • (2) 18
  • (3) 27
  • (4) 3

Question 68:

If the direction ratios of two parallel lines are \( a, b, c \) and \( x, y, z \), then \( az = \)

  • (1) \( cy \)
  • (2) \( cx \)
  • (3) \( bz \)
  • (4) \( ax \)

Question 69:

If the direction ratios of two mutually perpendicular lines are \( 5, 2, 4 \) and \( 4, 8, x \), then the value of \( x \) is

  • (1) 9
  • (2) -9
  • (3) 8
  • (4) -8

Question 70:

Find the equation of a plane parallel to the plane \( 9x - 8y + 7z = 10 \)

  • (1) \( 9x - 8y - 7z = 5 \)
  • (2) \( 9x - 8y + 7z = 5 \)
  • (3) \( 9x + 8y + 7z = 5 \)
  • (4) \( 9x - y + 7z = 5 \)

Question 71:

Find \( |\vec{i} - \vec{j} - 3\vec{k}| \)

  • (1) 11
  • (2) \( \sqrt{11} \)
  • (3) \( \sqrt{7} \)
  • (4) \( \sqrt{10} \)

Question 72:

Find \( (4\vec{i} + 3\vec{j})^2 \)

  • (1) 7
  • (2) 19
  • (3) 25
  • (4) 49

Question 73:

Find \( (7\vec{i} - 8\vec{j} + 9\vec{k}) \cdot (\vec{i} - \vec{j} + \vec{k}) \)

  • (1) 25
  • (2) 24
  • (3) 23
  • (4) 22

Question 74:

Find \( \vec{i} \cdot \vec{i} + \vec{i} \cdot \vec{j} + \vec{j} \cdot \vec{j} + \vec{j} \cdot \vec{k} + \vec{k} \cdot \vec{k} \)

  • (1) 5
  • (2) 4
  • (3) 3
  • (4) 2

Question 75:

Find \( (11\vec{i} + \vec{j} + \vec{k}) \cdot (\vec{i} + \vec{j} + 11\vec{k}) \)

  • (1) 22
  • (2) 23
  • (3) 24
  • (4) 20

Question 76:

Find \( (\vec{k} \times \vec{j}) \cdot \vec{i} \)

  • (1) 0
  • (2) 1
  • (3) -1
  • (4) \( 2 \vec{i} \)

Question 77:

Find \( (\vec{i} - 2\vec{j} + 5\vec{k}) \cdot (-2\vec{i} + 4\vec{j} + 2\vec{k}) \)

  • (1) 20
  • (2) 18
  • (3) 0
  • (4) 4

Question 78:

Find \( \vec{i} \cdot \vec{j} + (\vec{i} \times \vec{i}) \)

  • (1) 2
  • (2) 1
  • (3) \( \vec{k} \)
  • (4) \( -\vec{k} \)

Question 79:

Which of the following is an objective function?

  • (1) \( x \geq 10 \)
  • (2) \( y \geq 0 \)
  • (3) \( z = 7x + 3y \)
  • (4) All of these

Question 80:

The maximum value of \( z = 2x + y \) subject to the constraints \( x + y \leq 35 \), \( x \geq 0 \), and \( y \geq 0 \) is

  • (1) 35
  • (2) 105
  • (3) 70
  • (4) 140

Question 81:

The maximum value of \( z = 3x - y \) subject to constraints \[ x + y \leq 8, \quad x \geq 0, \quad y \geq 0 \]

  • (1) -8
  • (2) 24
  • (3) 16
  • (4) 8

Question 82:

The chance of getting a doublet in a throw of 2 dice is

  • (1) \( \frac{2}{3} \)
  • (2) \( \frac{1}{6} \)
  • (3) \( \frac{5}{6} \)
  • (4) \( \frac{5}{36} \)

Question 83:

The addition theorem of probability is

  • (1) \( P(A \cup B) = P(A) + P(B) \)
  • (2) \( P(A \cup B) = P(A) + P(B) + P(A \cap B) \)
  • (3) \( P(A \cup B) = P(A) + P(B) - P(A \cap B) \)
  • (4) \( P(A \cup B) = P(A) \cdot P(B) \)

Question 84:

If odds in favour of event \( E \) are \( a : b \), then \( P(E) = \)

  • (1) \( \frac{a}{a - b} \)
  • (2) \( \frac{a}{a + b} \)
  • (3) \( \frac{b}{a + b} \)
  • (4) \( \frac{b}{a - b} \)

Question 85:

The multiplication theorem of probability is

  • (1) \( P(A \cap B) = P(A) \cdot P(B) \)
  • (2) \( P(A \cap B) = P(A) + P(B) - P(A \cup B) \)
  • (3) \( P(A \cap B) = P(A) \cdot P(B | A) \)
  • (4) None of these

Question 86:

Find \( \frac{d}{dx} \left( e^{3 - 2x} \right) \)

  • (1) \( e^{3 - 2x} \)
  • (2) \( 2e^{3 - 2x} \)
  • (3) \( -2e^{3 - 2x} \)
  • (4) \( -e^{3 - 2x} \)

Question 87:

Find \( \int 2^{x + 1} \, dx \)

  • (1) \( \frac{2^{x + 1}}{\log 2} + k \)
  • (2) \( 2^{x + 1} \log 2 + k \)
  • (3) \( (x + 1) \cdot 2^x + k \)
  • (4) \( 2^{x + 1} + k \)
Correct Answer: (1) \( \frac{2^{x + 1}}{\log 2} + k \)
View Solution



We use the formula for the integral of an exponential function: \[ \int a^x \, dx = \frac{a^x}{\log a} + C. \]
Here, \( a = 2 \) and the exponent is \( x+1 \). Therefore: \[ \int 2^{x + 1} \, dx = \frac{2^{x + 1}}{\log 2} + k. \]
Thus, the correct answer is: \[ \boxed{\frac{2^{x + 1}}{\log 2} + k}. \] Quick Tip: For integrals of exponential functions with base \( a \), remember to divide by \( \log a \).


Question 88:

Find \( \int \frac{(\sqrt{x} + 1)^2}{x \sqrt{x} + 2x + \sqrt{x}} \, dx \)

  • (1) \( \sqrt{x} + k \)
  • (2) \( \frac{1}{2} \sqrt{x} + k \)
  • (3) \( 2\sqrt{x} + k \)
  • (4) \( 2x + k \)

Question 89:

Find \( \int_{-1}^1 \sin^{13} x \cdot \cos^{12} x \, dx \)

  • (1) 0
  • (2) 1
  • (3) \( \frac{1}{2} \)
  • (4) 2

Question 90:

Find \( \int_0^2 e^x \, dx \)

  • (1) \( e^2 \)
  • (2) \( e^2 - 2 \)
  • (3) \( e^2 - 1 \)
  • (4) \( e - 1 \)

Question 91:

Evaluate \( \int_\alpha^\beta \phi(x) \, dx + \int_\beta^\alpha \phi(x) \, dx \)

  • (1) 2
  • (2) 1
  • (3) 0
  • (4) \( 2 \int_\alpha^\beta \phi(x) \, dx \)

Question 92:

Find

  • (1) \( x^2 - 2x \)
  • (2) \( 2x - 2 \)
  • (3) \( 2x + 2 \)
  • (4) \( x - 2 \)

Question 93:

\[ \frac{d}{dx} \lim_{n \to 1} \frac{x^n - 1}{n+1} \]

  • (1) 0
  • (2) \( \frac{1}{2} \)
  • (3) \( \frac{1}{2}x \)
  • (4) 1

Question 94:

Find \( \frac{d}{dx} \{ \log_3(x) \cdot \log_x(3) \} \)

  • (1) \( \frac{1}{9} \)
  • (2) 6
  • (3) \( 2 \log 3 \)
  • (4) 0

Question 95:

Find \( \frac{d}{dx} \log(x^{100}) \)

  • (1) \( \frac{1}{x^{100}} \)
  • (2) \( \frac{1}{x} \)
  • (3) \( \frac{100}{x} \)
  • (4) \( \frac{1}{100x} \)

Question 96:

Find \( \frac{d}{dx} \sin^{-1}(2x \sqrt{1 - x^2}) \)

  • (1) \( 2 \sin^{-1}(x) \)
  • (2) \( \frac{1}{\sqrt{1 - x^2}} \)
  • (3) \( \frac{2}{\sqrt{1 - x^2}} \)
  • (4) \( \frac{1}{\sqrt{1 - 4x^2 (1 - x^2)}} \)

Question 97:

Evaluate \( \int e^{2 \log(x)} \, dx \)

  • (1) \( e^{2 \log(x)} + k \)
  • (2) \( \frac{x^2}{2} + k \)
  • (3) \( \frac{x^3}{3} + k \)
  • (4) \( 3x^3 + k \)
Correct Answer: (2) \( \frac{x^2}{2} + k \)
View Solution



Using the property of logarithms, we have \( e^{2 \log(x)} = x^2 \). Therefore, the integral becomes: \[ \int e^{2 \log(x)} \, dx = \int x^2 \, dx = \frac{x^3}{3} + k. \]
Thus, the correct answer is: \[ \boxed{\frac{x^3}{3} + k}. \] Quick Tip: Use logarithmic identities to simplify the integrand before integrating.


Question 98:

Find

  • (1) \( 4x \)
  • (2) 4
  • (3) -60
  • (4) -4
Correct Answer: (2) 4
View Solution

The derivative of each element of the matrix is:

So, the correct answer is: Quick Tip: When differentiating a matrix, differentiate each entry individually.


Question 99:

Evaluate \( \int x^m \cdot x^n \, dx \)

  • (1) \( \frac{x^{m+1} \cdot x^{n+1}}{m+n+2} + k \)
  • (2) \( \frac{x^{m+n}}{m+n} + k \)
  • (3) \( \frac{x^{m+n+1}}{m+n+1} + k \)
  • (4) \( (m+n) x^{m+n-1} + k \)

Question 100:

Evaluate \( \int e^3 \cdot e^x \, dx \)

  • (1) \( e^x + k \)
  • (2) \( \frac{e^{3+x}}{3} + k \)
  • (3) \( e^{x+3} + k \)
  • (4) \( 3 e^{x+3} + k \)
Correct Answer: (3) \( e^{x+3} + k \)
View Solution



Since \( e^3 \) is a constant, we can factor it out of the integral: \[ \int e^3 \cdot e^x \, dx = e^3 \int e^x \, dx = e^3 e^x + k. \]
Thus, the correct answer is: \[ \boxed{e^{x+3} + k}. \] Quick Tip: When integrating exponential functions, use the fact that \( \int e^x \, dx = e^x + C \).

Comments


No Comments To Show