Statistics Important Questions

Namrata Das logo

Namrata Das Exams Prep Master

Exams Prep Master

Statistics refers to the branch of mathematics that concerns the collection, organization, analysis, interpretation and presentation of data. Statistics eases large amount of numerical data. In class 10, statistics consists of measures of central tendency in both grouped and ungrouped data. The chapter also includes cumulative frequency, frequency polygon, bar graphs and mainly focuses on different ways of calculating mean, median, and mode. 

Also read: Definite Integral Formula

Table of Content

  1. Important Questions

Important Questions

Short Answer Questions

Question. In a continuous frequency distribution, if each value is increased by five, what will be the new median. Given the old median is 21. (2015) 

Solution. New median = 21 + 5 = 26 

Question. What will be the mean of the first ten natural numbers? 

Solution. \(\hat{a} \) € The first 10 natural numbers are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. 

Mean = (1 +2 +3 +4 +5+ 6+ 7+ 8+ 9+10) / 10 = 55/10 =5.5 

Question. Find the Frequency of the 30-40 class in the following distribution. (2013) 

Marks obtained 0 or more 10 or more  20 or more  30 or more  40 or more  50 or more 
Number of students 63  58  55  51  48  41 

Solution. So, the Frequency of class 30 – 40 = 3 

Question. \(\hat{a} \) -Find the value of y from the following data, which is already arranged in ascending order. The given Median is 63. 20, 24, 42, y, y +2, 73, 75, 80, 99 

Solution. As the number of observations is odd, so the median will be the middle term which is y+2, in the given case. So, 

y + 2 = 63 

y = 63 -2 = 61 

Question. The weekly household expenditure of families living in a housing society is shown below. Find the upper limit for the modal class. (2014) 

Weekly expenditure  Up to 3000  3000-6000  6000-9000  9000-12000  12000-15000 
No. of families  25  31  48  10 

Solution. Highest frequency = 48 

So the modal class=9,000 – 12,000 

The upper limit of the class=12,000 

Question. Find the mode in the data given below. 1,1,7,9,5,4,5,9,5,6,7,2,3,2,4 

Solution. Arranging the data in ascending order – 1,1,2,2,3,4,4,5,5,5,6,7,7,9,9 

As five repeats the most times in the data. Therefore 5 is the mode. 

Question. The mean of the frequency distribution given below is 18.75. Find the value of P: (2012, 2017D) 

Class mark 10 
 
P 25  30 
frequency  10 

Solution.

x f fx
10 5 50
15 10 150
P 7 7P
25 8 200
30 2 60
Fi=32  Fixi=460+7p 

=Mean =∑xifi /∑fi\(\hat{a} \) -

=18.75=360+7P/32 

600=360+7P 

600-360=7P 

P=240/7=34.29 

Question. Find the median using the empirical formula when it is given that the mean = 30.5 and mode = 35.3. (2014) 

Solution. Mode = 3(Median) – 2(Mean) 

35.3 = 3(median) – 2(30.5) 

35.3 = 3(median) – 61 

96.3 = 3 median 

Median =\(\hat{a} \) -96.3/3\(\hat{a} \) -= 32.1 

Question. Find the mode of the following frequency distribution. (2013) 

Class
 
0-10  10-20  20-30  30-40  40-50 
Frequency 12  10  11 

Solution.

Class 0-10  10-20  20-30  30-40  40-50 
Frequency 8 f0  12 f1  10 f2  11 

Maximum frequency = 12 

Mode= l+ \(\frac{(f1?f0)}{(2f1?f0?f2)} × h \)

= \(10 + \frac{12- 8 * 10}{24-8-10}\)

=10+6.6=16.6 

Long Answer Questions 

Question. The mean of the given distribution is 53. the frequencies f1\(\hat{a} \) -and f2\(\hat{a} \) -in the classes 20-40 and 60-80 are missing. Find the missing frequencies: (2013) 

Classes 0-20  20-40  40-60  60-80  80-100  Total 
Frequency 15  F1  21  F2  17  100

Solution. 53+f1+f2=100 

=f1+f2=100-53=47 

f2=47-f1- (1) 

Mean =∑xifi /∑fi\(\hat{a} \) -=53 

2370+30f1+70f2/100=53 

=2730 + 70f2 + 30f1\(\hat{a} \) -= 5300 

= 30f1+ 70f2\(\hat{a} \) -= 5300 – 2730 = 2570 

=3f1\(\hat{a} \) -+ 7f2\(\hat{a} \) -= 257 after dividing by 10 

=3f1\(\hat{a} \) -+7(47 – f1) = 257. From 1 

= 3f1\(\hat{a} \) -– 7f1\(\hat{a} \) -+ 329 = 257 

= -4f1\(\hat{a} \) -= -72 

= f1=\(\hat{a} \) -−72/−4\(\hat{a} \) -= 18 

Putting the value of f1\(\hat{a} \) -in (1), we get 

f2\(\hat{a} \) -= 47 – f1 

= f2\(\hat{a} \) -= 47 – 18 = 29 

f1\(\hat{a} \) -= 18, f2\(\hat{a} \) -= 29 

Question. The mean of the given frequency distribution is 62.8, and the sum of frequencies is 50. Calculate the missing frequencies f1\(\hat{a} \) -and f2: (2013) 

Classes  0-20 20-40 40-60 60-80 80-100 100-120 Total 
Frequencies  5 f1 10 f2 7 8 50

Solution. 30+f1+f2=50 

50-30-f1=f2 

F2=20-f1 (1) 

Mean =∑xifi /∑fi\(\hat{a} \) -=62.8 

2060+30f1+70f2/50=62.8 

= 2060 + 30f1\(\hat{a} \) -+ 70 f2\(\hat{a} \) -= 3140 

= 30 f1 + 70 f2\(\hat{a} \) -= 3140 – 2060 = 1080 

= 3 f1 + 7 f2\(\hat{a} \) -= 108 after dividing by 10 

= 3 f1 + 7(20 – f1) = 108 From (1) 

=3 f1– 7f1\(\hat{a} \) -+ 140 = 108 

= -4 f1 = -32. 

f1 = 8 

Putting the value of f1\(\hat{a} \) -into (i), we get 

f2\(\hat{a} \) -= 20 – 8 = 12 

f2\(\hat{a} \) -= 12

Question. Given that the median for the data is 31, find the value of x and y. (2012) 

Solution. Total 40 

=22+x+y=40 

=X+y=18 

=Y=18-x (1) 

n/2=40/2=20 

median is 31 so median class is 30-40 

Median= l + \(\frac{n/2?cf}{f} ×h \)

31= \(\frac{30+20-(11+x)}{18-x}\) x h (as f= y which is equal to 18-x according to statement 1) 

= 31- 30 =\(\frac{(20-11-x)}{18-x}\) x 10

= 18 – x = (9 – x)10 

= 18 – x = 90 – 10x 

=10x -x = 90 – 18 

= 9x = 72 

= x = 8 

Putting the value of x in (1

y = 18 – 8 = 10 

x = 8, y = 10 

median for the data is 31, find the value of x and y
Median for the data is 31, find the value of x and y

Also Read:

CBSE X Related Questions

  • 1.
    PA and PB are tangents drawn to a circle with centre O. If \(\angle AOB = 120^\circ\) and OA = 10 cm, then
    PA and PB are tangents drawn to a circle with centre O

    (i) Find \(\angle OPA\).
    (ii) Find the perimeter of \(\triangle OAP\).
    (iii) Find the length of chord AB.


      • 2.
        Prove that: \[ \frac{\cos \theta - 2 \cos^3 \theta}{\sin \theta - 2 \sin^3 \theta} + \cot \theta = 0 \]


          • 3.
            Find 'mean' and 'mode' of the following data : Frequency Distribution Table
            Class0 – 1515 – 3030 – 4545 – 6060 – 7575 – 90
            Frequency118157109


              • 4.
                Let $p$, $q$ and $r$ be three distinct prime numbers. Check whether $pqr + q$ is a composite number or not. Further, give an example for three distinct primes $p$, $q$, $r$ such that
                (i) $pqr + 1$ is a composite number
                (ii) $pqr + 1$ is a prime number


                  • 5.
                    Using prime factorisation, find the HCF of 144, 180 and 192.


                      • 6.

                        Two identical cones are joined as shown in the figure. If radius of base is 4 cm and slant height of the cone is 6 cm, then height of the solid is

                          • 8 cm
                          • \(4\sqrt{5}\) cm
                          • \(2\sqrt{5}\) cm
                          • 12 cm

                        Comments


                        No Comments To Show