Matrices and Determinants is an important topic in the Mathematics section in TS EAMCET exam. Practising this topic will increase your score overall and make your conceptual grip on TS EAMCET exam stronger.
This article gives you a full set of TS EAMCET PYQs for Matrices and Determinants with explanations for effective preparation. Practice of TS EAMCET Mathematics PYQs including Matrices and Determinants questions regularly will improve accuracy, speed, and confidence in the TS EAMCET 2026 exam.
Also Read

TS EAMCET PYQs for Matrices and Determinants with Solutions
1.
The system of linear equations $(\sin\theta)x+y-2z=0$, $2x-y+(\cos\theta)z = 0$ and $-3x+(\sec\theta)y+3z=0$, where $\theta \neq (2n+1)\frac{\pi}{2}$, has non-trivial solution for- no value of $\theta$
- $\theta = n\pi + \frac{\pi}{4}, n \in \mathbb{Z}$
- $\theta = \text{Tan}^{-1}\left(\frac{3}{4}\right)$
- $\theta = \text{Tan}^{-1}\left(\frac{4}{3}\right)$
2.
If the system of simultaneous linear equations $x+\lambda y-2z=1$, $x-y+\lambda z=2$ and $x-2y+3z=3$ is inconsistent for $\lambda = \lambda_1$ and $\lambda_2$, then $\lambda_1 + \lambda_2 =$- 5
- $\sqrt{5}$
- 1
- -1
3.
The sum of all the roots of the equation $\begin{vmatrix} x & -3 & 2 \\ -1 & -2 & x-1 \\ 1 & x-2 & 3 \end{vmatrix} = 0$ is- 13
- 3
- 2
- 7
4.
If $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, then Adj(Adj(Adj A)) =- A
- $A^{-1}$
- $|A|A^{-1}$
- $\frac{A^{-1}}{|A|}$





Comments