KEAM 2025 April 25 Question Paper (Available) :Download Solutions with Answer Key

Shivam Yadav's profile photo

Shivam Yadav

Updated 3+ months ago

KEAM 2025 Engineering exam in multiple days, starting from April 23 to April 28, 2025. The KEAM 2025 April 25 Engineering exam was conducted from 2:00 PM to 5:00 PM.

The KEAM 2025 Engineering exam is an online CBT with a total of 150 questions divided between the three subjects. Physics (45 questions), Chemistry (30 questions) and Mathematics (75 questions). As per the KEAM 2025 marking scheme, +4 marks will given for every correct answer and 1 mark is deducted for every incorrect answer. The KEAM 2025 exam is a total of 600 marks. The candidates have 180 minutes (3 hours) to complete the exam.

The question paper PDF and solution PDF is available to download here.

Related Links:

KEAM 2025 25 April Question Paper PDF Download

KEAM 2025 Question Paper With Answer Key Download Check Solutions
KEAM 2025 Question Paper with Answer Key PDF

Question 1:

Evaluate the following limit: \[ \lim_{x \to 0} \frac{1 + \cos(4x)}{\tan(x)} \]

  • (A) 2
  • (B) 1
  • (C) 0
  • (D) 4
Correct Answer: (B) 1
View Solution

Question 2:

If \( f(x) = \frac{1}{x^2} \), \( u = f(x) \), and \( f'(x) \), then find \( \frac{du}{dx} \).

  • (A) \( -\frac{2}{x^3} \)
  • (B) \( \frac{2}{x^3} \)
  • (C) \( -\frac{1}{x^3} \)
  • (D) \( \frac{1}{x^3} \)
Correct Answer: (B) \( \frac{2}{x^3} \)
View Solution

Question 3:

Given \( y = \sec(\tan^{-1}(x)) \), find \( \frac{dy}{dx} \) at \( x = \sqrt{3} \).

  • (A) 1
  • (B) \( 2 \)
  • (C) \( \sqrt{3} \)
  • (D) \( 0 \)
Correct Answer: (A) 1
View Solution

Question 4:

Equation of parabola having focii (-3, 1) and (3, 1)

  • (A) \( y^2 = 4x \)
  • (B) \( x^2 = 4y \)
  • (C) \( x^2 = 4y - 1 \)
  • (D) \( y^2 = 4(x + 3)(x - 3) \)
Correct Answer: (D) \( y^2 = 4(x + 3)(x - 3) \)
View Solution

Question 5:

Solve the following differential equation and integrate: \[ \frac{dy}{dx} + \frac{2x}{1 + x^2} \cdot y = x \]

  • (A) \( y = \frac{x}{1 + x^2} \)
  • (B) \( y = \frac{x^2}{1 + x^2} \)
  • (C) \( y = x \)
  • (D) \( y = \ln(1 + x^2) \)
Correct Answer: (A) \( y = \frac{x}{1 + x^2} \)
View Solution

Question 6:

Find the value of \[ \sin 60^\circ - \sin 80^\circ + \sin 100^\circ - \sin 120^\circ \]

  • (A) \( 0 \)
  • (B) \( -1 \)
  • (C) \( 1 \)
  • (D) \( 2 \)
Correct Answer: (A) 0
View Solution

Question 7:

Solve for \( \alpha \) if: \[ \cos^{-1}(2 \sin \alpha) = \frac{47}{12} \]

  • (A) \( \alpha = \sin^{-1} \left( \frac{47}{12} \right) \)
  • (B) \( \alpha = \cos^{-1} \left( \frac{47}{12} \right) \)
  • (C) \( \alpha = \sin^{-1} \left( \frac{2}{12} \right) \)
  • (D) None of these
Correct Answer: (D) None of these
View Solution

Question 8:

If \( \tan\left( \alpha - \frac{\pi}{12} \right) = \frac{1}{\sqrt{3}} \), find \( \alpha \).

  • (A) \( \alpha = \frac{\pi}{6} \)
  • (B) \( \alpha = \frac{\pi}{4} \)
  • (C) \( \alpha = \frac{\pi}{3} \)
  • (D) \( \alpha = \frac{\pi}{2} \)
Correct Answer: (A) \( \alpha = \frac{\pi}{6} \)
View Solution

Question 9:

If \( f(x) = \frac{\sqrt{x^4}}{\sqrt{x^2}} \), find \( f'(27) \).

  • (A) \( 2 \times 27 \)
  • (B) \( 3 \times 27^2 \)
  • (C) \( 27 \)
  • (D) \( 54 \)
Correct Answer: (D) \( 54 \)
View Solution

Question 10:

Find the domain of the function: \[ f(x) = \sqrt{7 - 11x} \]

  • (A) \( x \leq \frac{7}{11} \)
  • (B) \( x \geq \frac{7}{11} \)
  • (C) \( x \in (-\infty, \infty) \)
  • (D) \( x \leq -\frac{7}{11} \)
Correct Answer: (A) \( x \leq \frac{7}{11} \)
View Solution

Question 11:

If \( a, a r, a r^2 \) are in a geometric progression (G.P.), then find the value of: \[ \left| a \quad a r \right| \quad \left| a r^2 \quad a r^3 \right| = \left| a r^3 \quad a r^6 \right| \]

  • (A) \( r^2 \)
  • (B) \( r^4 \)
  • (C) \( r^6 \)
  • (D) \( r^3 \)
Correct Answer: (B) \( r^4 \)
View Solution

Question 12:

If \( a_n = 2^{n-1} \), where \( n = 1, 2, 3, \dots \), then find \( \sum_{n=1}^{20} a_n \).

  • (A) \( 2^{20} - 1 \)
  • (B) \( 2^{21} - 1 \)
  • (C) \( 2^{19} - 1 \)
  • (D) \( 2^{20} \)
Correct Answer: (B) \( 2^{21} - 1 \)
View Solution

Question 13:

Find the limit: \[ \lim_{x \to 0^+} 2 \left\lfloor x \right\rfloor - \frac{x}{|x|} \]

  • (A) \( -2 \)
  • (B) \( 0 \)
  • (C) \( 2 \)
  • (D) Undefined
Correct Answer: (A) \( -2 \)
View Solution

Question 14:

Given the set \( S = \{ a, b, c, d, e, f \} \), find the total number of subsets with an odd number of elements.

  • (A) \( 16 \)
  • (B) \( 32 \)
  • (C) \( 64 \)
  • (D) \( 2^{6-1} = 32 \)
Correct Answer: (B) \( 32 \)
View Solution

Question 15:

If \( \sum_{k=0}^{n+1} C_k^n = 512 \), find \( \sum_{k=0}^{n} C_k^n \).

  • (A) \( 256 \)
  • (B) \( 512 \)
  • (C) \( 1024 \)
  • (D) \( 1023 \)
Correct Answer: (A) \( 256 \)
View Solution

Question 16:

Find the limit: \[ \lim_{x \to 0^+} 2 \left\lfloor x \right\rfloor - \frac{x}{|x|} \]

  • (A) \( -2 \)
  • (B) \( 0 \)
  • (C) \( 2 \)
  • (D) Undefined
Correct Answer: (A) \( -2 \)
View Solution

Question 17:

Given the set \( S = \{ a, b, c, d, e, f \} \), find the total number of subsets with an odd number of elements.

  • (A) \( 16 \)
  • (B) \( 32 \)
  • (C) \( 64 \)
  • (D) \( 2^{6-1} = 32 \)
Correct Answer: (B) \( 32 \)
View Solution

Question 18:

If \( \sum_{k=0}^{n+1} C_k^n = 512 \), find \( \sum_{k=0}^{n} C_k^n \).

  • (A) \( 256 \)
  • (B) \( 512 \)
  • (C) \( 1024 \)
  • (D) \( 1023 \)
Correct Answer: (A) \( 256 \)
View Solution

Question 19:

Find the limit: \[ \lim_{x \to 11} \frac{x - 11}{\sqrt{49 + x^2} - 13} \]

  • (A) \( 0 \)
  • (B) \( 1 \)
  • (C) \( 2 \)
  • (D) Undefined
Correct Answer: (B) \( 1 \)
View Solution

Question 20:

Find the area of the triangle formed by the lines: \[ y = -4, \quad y = x, \quad y = -4 \]

  • (A) \( 16 \)
  • (B) \( 12 \)
  • (C) \( 8 \)
  • (D) \( 10 \)
Correct Answer: (B) \( 12 \)
View Solution

Question 21:

Evaluate the integral: \[ \int_{-1}^1 |x - 3| \, dx \]

  • (A) \( 0 \)
  • (B) \( 3 \)
  • (C) \( 4 \)
  • (D) \( 6 \)
Correct Answer: (D) \( 6 \)
View Solution

Question 22:

Evaluate the integral: \[ \int_0^\pi \frac{\tan x}{\cos x} \, dx = \int_0^\pi \frac{\sin x}{\cos^2 x} \, dx \]

  • (A) \( \infty \)
  • (B) \( 0 \)
  • (C) \( 1 \)
  • (D) Undefined
Correct Answer: (A) \( \infty \)
View Solution

Question 23:

Solve the differential equation: \[ (1 + y) \, dx = (1 + x) \, dy \]

  • (A) \( x = \frac{y^2}{2} \)
  • (B) \( x = \frac{y^2}{2} + C \)
  • (C) \( x = y^2 + C \)
  • (D) \( x = y^2 \)
Correct Answer: (B) \( x = \frac{y^2}{2} + C \)
View Solution

Question 24:

Find the value of \( (1 + i)^{10} \).

  • (A) \( 2^5 \)
  • (B) \( 32 \)
  • (C) \( 2^{10} \)
  • (D) \( 2^{5} i \)
Correct Answer: (B) \( 32 \)
View Solution

Question 25:

The ratio of the velocity of light in a vacuum to that in a medium is?

  • (A) \( \sqrt{\epsilon \mu} \)
  • (B) \( \frac{1}{\sqrt{\epsilon \mu}} \)
  • (C) \( \frac{\epsilon \mu}{2} \)
  • (D) \( \sqrt{\mu \epsilon} \)
Correct Answer: (B) \( \frac{1}{\sqrt{\epsilon \mu}} \)
View Solution

Question 26:

The velocity of light through a medium of relative permittivity 2 and relative permeability 4.5 is (in terms of \( c \)):

  • (A) \( \frac{c}{\sqrt{2 \cdot 4.5}} \)
  • (B) \( \frac{c}{\sqrt{2 \cdot 4}} \)
  • (C) \( \frac{c}{\sqrt{2 \cdot 5}} \)
  • (D) \( \frac{c}{\sqrt{4.5}} \)
Correct Answer: (A) \( \frac{c}{\sqrt{2 \cdot 4.5}} \)
View Solution

Question 27:

The velocity of light through a medium of relative permittivity 2 and relative permeability 4.5 is (in terms of \( c \)):

  • (A) \( \frac{c}{\sqrt{2 \cdot 4.5}} \)
  • (B) \( \frac{c}{\sqrt{2 \cdot 4}} \)
  • (C) \( \frac{c}{\sqrt{2 \cdot 5}} \)
  • (D) \( \frac{c}{\sqrt{4.5}} \)
Correct Answer: (A) \( \frac{c}{\sqrt{2 \cdot 4.5}} \)
View Solution

Question 28:

The velocity of light through a medium of relative permittivity 2 and relative permeability 4.5 is (in terms of \( c \)):

  • (A) \( \frac{c}{\sqrt{2 \cdot 4.5}} \)
  • (B) \( \frac{c}{\sqrt{2 \cdot 4}} \)
  • (C) \( \frac{c}{\sqrt{2 \cdot 5}} \)
  • (D) \( \frac{c}{\sqrt{4.5}} \)
Correct Answer: (A) \( \frac{c}{\sqrt{2 \cdot 4.5}} \)
View Solution

Question 29:

Which of the following is mismatched pair?

  • (A) Eddy current - Induction furnace
  • (B) Transformer - Laminated core
  • (C) Induced emf - Biot-Savart law
  • (D) Coaxial coil - Mutual induction
Correct Answer: (A) Eddy current - Induction furnace
View Solution

Question 30:

Which of the following statement is correct?
- i) Positive temperature coefficient
- ii) Charge carrier in semiconductor are ions and electrons

  • (A) Statement i is correct
  • (B) Statement ii is correct
  • (C) Both i and ii are correct
  • (D) Both i and ii are incorrect
Correct Answer: (C) Both i and ii are correct
View Solution

Question 31:

Moment of inertia of solid sphere having mass M and radius R about an axis passing through diameter is I. Moment of inertia of sphere of mass 2M and radius 2R is:

  • (A) \( 2I \)
  • (B) \( 4I \)
  • (C) \( 8I \)
  • (D) \( 16I \)
Correct Answer: (B) \( 4I \)
View Solution

Question 32:

Rectangular loop of side \(a\) and carrying current \(I\) is placed perpendicular to magnetic field. What will be the magnetic moment?

  • (A) \( I a^2 \)
  • (B) \( I a^3 \)
  • (C) \( I a \)
  • (D) \( I a^2 \hat{k} \)
Correct Answer: (A) \( I a^2 \)
View Solution

Question 33:

If the torque on electric dipole placed with \(30^\circ\) to electric field is \( \tau \), then what will be the torque if it is placed \(45^\circ\) with electric field?

  • (A) \( \tau \)
  • (B) \( \tau \sqrt{3} \)
  • (C) \( \tau \sin 45^\circ \)
  • (D) \( \tau \cos 45^\circ \)
Correct Answer: (C) \( \tau \sin 45^\circ \)
View Solution

Question 34:

Product of \( P \) and \( V \) of an ideal gas related to translational part of internal energy \( E \) as

  • (A) \( E = P \times V \)
  • (B) \( E = \frac{P V}{3} \)
  • (C) \( E = P \times V^2 \)
  • (D) \( E = \frac{3}{2} P V \)
Correct Answer: (B) \( E = \frac{P V}{3} \)
View Solution

Question 35:

Velocity of man swimming along the flow of river is 10 km/h and against the flow is 6 km/h. Velocity of man in still water is

  • (A) \( 8 \, km/h \)
  • (B) \( 7 \, km/h \)
  • (C) \( 5 \, km/h \)
  • (D) \( 9 \, km/h \)
Correct Answer: (A) \( 8 \, \text{km/h} \)
View Solution

Question 36:

Find object distance of concave mirror of \( R = 24 \, cm \) which gives magnification of 3.

  • (A) \( 16 \, cm \)
  • (B) \( 12 \, cm \)
  • (C) \( 8 \, cm \)
  • (D) \( 6 \, cm \)
Correct Answer: (B) \( 12 \, \text{cm} \)
View Solution

Question 37:

4 masses are placed at 4 corners of square ABCD. If one mass is removed from the corner B, then the centre of mass lies in the line joining

  • (A) \( AC \)
  • (B) \( AB \)
  • (C) \( AD \)
  • (D) \( BC \)
Correct Answer: (B) \( \text{AB} \)
View Solution

Question 38:

Mean free path is inversely proportional to (n = number density, d = diameter of particle)

  • (A) \( \frac{1}{n^2} \)
  • (B) \( \frac{1}{\sqrt{n}} \)
  • (C) \( \frac{1}{d} \)
  • (D) \( \frac{1}{d^2} \)
Correct Answer: (C) \( \frac{1}{d} \)
View Solution

Question 39:

If \( X = A \times B \), \( A = \begin{bmatrix} 1 & 2
-1 & 1 \end{bmatrix} \), \( B = \begin{bmatrix} 3 & 6
5 & 7 \end{bmatrix} \), find \( x_1 + x_2 \).

  • (A) \( 12 \)
  • (B) \( 15 \)
  • (C) \( 10 \)
  • (D) \( 8 \)
Correct Answer: (B) \( 15 \)
View Solution

Question 40:

If a box has 8 red balls, 12 white balls, 17 black balls. If two balls are taken one by one without replacement, then the probability of taking one red ball and one black ball is

  • (A) \( \frac{136}{567} \)
  • (B) \( \frac{136}{561} \)
  • (C) \( \frac{80}{561} \)
  • (D) \( \frac{128}{561} \)
Correct Answer: (C) \( \frac{80}{561} \)
View Solution

Question 41:

If ABCD is a rectangle, \( AB = 5i + 4j - 3k \) and \( AD = 3i + 2j - k \), then find \( BD \).

  • (A) \( 6i + 6j - 4k \)
  • (B) \( 5i + 6j - 4k \)
  • (C) \( 8i + 6j - 4k \)
  • (D) \( 6i + 5j - 4k \)
Correct Answer: (A) \( 6i + 6j - 4k \)
View Solution

Question 42:

Evaluate the integral: \[ \int e^{-x} \cdot e^{3x} \, dx \]

  • (A) \( \frac{e^{2x}}{2} + C \)
  • (B) \( e^{2x} + C \)
  • (C) \( \frac{e^{3x}}{3} + C \)
  • (D) \( e^{x} + C \)
Correct Answer: (B) \( e^{2x} + C \)
View Solution

Question 43:

Given that \[ x = \frac{\sin^2 \theta}{\tan \theta - \sec \theta}, \quad y = \frac{\sec \theta + \tan \theta}{\sec^2 \theta}, \quad find \, \frac{y}{x} \]

  • (A) \( \frac{\sec \theta + \tan \theta}{\sin^2 \theta} \)
  • (B) \( \frac{\tan \theta + 1}{\sin \theta} \)
  • (C) \( \frac{\tan \theta + \sec \theta}{\sin^2 \theta} \)
  • (D) \( \frac{\sec \theta + \sin \theta}{\tan \theta} \)
Correct Answer: (C) \( \frac{\tan \theta + \sec \theta}{\sin^2 \theta} \)
View Solution

Question 44:

Evaluate the integral \[ I = \int \frac{\sin 4x}{\sin 2x} \, dx \]

  • (A) \( 2 \)
  • (B) \( 4 \)
  • (C) \( 1 \)
  • (D) \( 0 \)
Correct Answer: (B) \( 4 \)
View Solution

Question 45:

Find the term independent of \( x \) in \[ \left( 2x - \frac{5}{x^2} \right)^6 \]

  • (A) \( 0 \)
  • (B) \( 120 \)
  • (C) \( 250 \)
  • (D) \( 100 \)
Correct Answer: (B) \( 120 \)
View Solution

Question 46:

Given \[ Z_1 = \frac{1}{2} + \frac{\sqrt{3}}{2}i, \quad Z_2 = -\frac{1}{2} - \frac{\sqrt{3}}{2}i, \quad and \quad w = Z_1 + Z_2, \quad find \, w. \]

  • (A) \( w = 0 \)
  • (B) \( w = \sqrt{3}i \)
  • (C) \( w = 1 \)
  • (D) \( w = \sqrt{2} \)
Correct Answer: (A) \( w = 0 \)
View Solution

Question 47:

Evaluate the expression \[ \frac{3 \tan 15^\circ - \tan 3 \times 15^\circ}{1 - 3 \tan^2 15^\circ} \]

  • (A) \( 1 \)
  • (B) \( \sqrt{3} \)
  • (C) \( 0 \)
  • (D) \( -1 \)
Correct Answer: (C) \( 0 \)
View Solution

Question 48:

Find the half-life of a first order reaction if \( K = 2.31 \times 10^5 \, s^{-1} \).

  • (A) \( 2.99 \times 10^{-6} \, s \)
  • (B) \( 1.17 \times 10^{-5} \, s \)
  • (C) \( 3.00 \times 10^{-5} \, s \)
  • (D) \( 1.00 \times 10^{-6} \, s \)
Correct Answer: (C) \( 3.00 \times 10^{-5} \, \text{s} \)
View Solution

Question 49:

Which complex has dsp\(^2\) hybridisation?
(A) \( [Ni(CN)_4]^{2-} \)

(B) \( BF_4^- \)

Correct Answer: (A) \( [Ni(CN)_4]^{2-} \)
View Solution

Question 50:

What is the hydration enthalpy of sucrose?

  • (A) \( -100 \, kJ/mol \)
  • (B) \( -200 \, kJ/mol \)
  • (C) \( -300 \, kJ/mol \)
  • (D) Cannot be determined
Correct Answer: (D) Cannot be determined
View Solution

Question 51:

Find the log \( K \) value, if \( \Delta G = -11.4 \) and \( 2.303 \cdot RT = 5.7 \times 10^1 \).

  • (A) \( 0.2 \)
  • (B) \( 0.4 \)
  • (C) \( 1.5 \)
  • (D) \( 3.2 \)
Correct Answer: (C) \( 1.5 \)
View Solution

Question 52:

Formula of chromium ore?

  • (A) \( Cr_2O_3 \)
  • (B) \( Cr_2O_4 \)
  • (C) \( CrO_2 \)
  • (D) \( Cr_3O_4 \)
Correct Answer: (A) \( \text{Cr}_2\text{O}_3 \)
View Solution

Question 53:

Bromomethane on reaction with Na and dry ether gives:

  • (A) n-propane
  • (B) n-butane
  • (C) isopropane
Correct Answer: (A) n-propane
View Solution

Question 54:

Which of the following are neutral?

  • (A) KF
  • (B) KBr
  • (C) NaCl
  • (D) Na(NO_3)_2
Correct Answer: (C) NaCl
View Solution

Question 55:

What is the de Broglie wavelength of the particle having kinetic energy of \( 2E \)?

  • (A) \( \frac{h}{\sqrt{2mE}} \)
  • (B) \( \frac{h}{\sqrt{2m2E}} \)
  • (C) \( \frac{h}{2\sqrt{mE}} \)
  • (D) \( \frac{h}{\sqrt{mE}} \)
Correct Answer: (B) \( \frac{h}{\sqrt{2m2E}} \)
View Solution

Question 56:

Write the product of the reaction:
\[ CH_3 CH_2 CH_2 O Na + C_6 H_5 Br \to ? \]

  • (A) \( CH_3 CH_2 CH_2 O C_6 H_5 \)
  • (B) \( C_6 H_5 CH_3 CH_2 CH_2 \)
  • (C) \( CH_3 CH_2 CH_2 Br + C_6 H_5 O \)
  • (D) \( CH_3 CH_2 CH_2 O \)
Correct Answer: (A) \( \text{CH}_3 \text{CH}_2 \text{CH}_2 \text{O} \text{C}_6 \text{H}_5 \)
View Solution

Question 57:

What is incorrect for Bond order?

  • (A) Represents the number of bonds present between a compound/molecule
  • (B) Bond order decreases with bond energy
  • (C) Bond order increases with bond energy
  • (D) Bond order inversely proportional to bond length
Correct Answer: (B) Bond order decreases with bond energy
View Solution

Question 58:

Which has a higher boiling point, ethanol or propanol?

  • (A) Ethanol
  • (B) Propanol
Correct Answer: (B) Propanol
View Solution

Question 59:

Ethyl alcohol on reaction with \( H_2SO_4 \) at 413 K gives:

  • (A) Ethene
  • (B) Propane
  • (C) Acetylene
  • (D) Methane
Correct Answer: (A) Ethene
View Solution

Question 60:

If \( \mu_s \) and \( \mu_k \) are static and kinetic friction, then:

  • (A) \( \mu_s > \mu_k \) maximum value of \( \mu_s \)
  • (B) \( \mu_s \) is opposing impending motion
  • (C) \( \mu_s \) depends on area
  • (D) Both doesn’t depend on area
Correct Answer: (A) \( \mu_s > \mu_k \) maximum value of \( \mu_s \)
View Solution

Question 61:

The angular velocity of the minute hand and the second hand is?

  • (A) Same
  • (B) Minute hand has higher angular velocity
  • (C) Second hand has higher angular velocity
  • (D) None of the above
Correct Answer: (C) Second hand has higher angular velocity
View Solution

Question 62:

The wavelength of body radiation having maximum energy is \( \lambda_m \) at temperature \( T \). If the wavelength of radiation corresponds to maximum energy is \( \frac{\lambda}{3} \), then temperature is:

  • (A) \( 3T \)
  • (B) \( \frac{T}{3} \)
  • (C) \( 9T \)
  • (D) \( \frac{T}{9} \)
Correct Answer: (A) \( 3T \)
View Solution

Question 63:

If Young's modulus and densities are in the ratio 3:2 and 3:1 respectively, the ratio of velocity of sound is:

  • (A) \( 3:1 \)
  • (B) \( 3:2 \)
  • (C) \( 1:3 \)
  • (D) \( 1:2 \)
Correct Answer: (A) \( 3:1 \)
View Solution

Question 64:

If maximum height and range are equal in projectile motion, then \( \tan \theta = \dots \):

  • (A) \( 1 \)
  • (B) \( 2 \)
  • (C) \( 3 \)
  • (D) \( \frac{1}{2} \)
Correct Answer: (A) \( 1 \)
View Solution

Question 65:

Three identical resistors are connected as triangle ABC. Voltage across AB = 12V. Find the ratio of current through AB to ACB:

  • (A) \( 1:2 \)
  • (B) \( 1:1 \)
  • (C) \( 2:1 \)
  • (D) \( 3:1 \)
Correct Answer: (B) \( 1:1 \)
View Solution

Question 66:

The transition of an atom from \( n = \infty \) to \( n = 3 \) represents:

  • (A) Shortest wavelength of Paschen series
  • (B) Longest wavelength of Paschen series
  • (C) Shortest wavelength of Balmer series
  • (D) Longest wavelength of Balmer series
Correct Answer: (A) Shortest wavelength of Paschen series
View Solution

Question 67:

The ratio of the wavelength of two particles with energy \( E \) and \( 3E \) respectively, is:

  • (A) \( 1: \sqrt{3} \)
  • (B) \( \sqrt{3}:1 \)
  • (C) \( 1:3 \)
  • (D) \( 3:1 \)
Correct Answer: (A) \( 1: \sqrt{3} \)
View Solution

Question 68:

The ratio of angular velocity of two satellites at a distance \( r \) and \( 2r \) from the centre of the earth is:

  • (A) \( 1:1 \)
  • (B) \( 1:2 \)
  • (C) \( 2:1 \)
  • (D) \( 4:1 \)
Correct Answer: (C) \( 2:1 \)
View Solution

Question 69:

When a rectangular coil having length \( l \) and breadth \( b \) are placed perpendicular to the magnetic field. The torque experienced by the coil is:

  • (A) \( l b B \)
  • (B) \( \frac{1}{2} l b B \)
  • (C) \( l b B^2 \)
  • (D) \( l b B^2 \sin \theta \)
Correct Answer: (A) \( l b B \)
View Solution

Question 70:

If the kinetic energy decreases by 49%, what is the percentage change in speed?

  • (A) \( 5% \) decrease
  • (B) \( 10% \) decrease
  • (C) \( 7% \) decrease
  • (D) \( 14% \) decrease
Correct Answer: (B) \( 10% \) decrease
View Solution

Question 71:

The dimensional formula of product of moment of inertia and square of angular velocity is:

  • (A) \( [M L^2 T^{-2}] \)
  • (B) \( [M L^2 T^{-4}] \)
  • (C) \( [M L^2 T^{-3}] \)
  • (D) \( [M L^2 T^{-1}] \)
Correct Answer: (B) \( [M L^2 T^{-4}] \)
View Solution

Question 72:

The ratio of distance of the sun from the earth to that of the moon from the earth is in the order:

  • (A) \( 10^6 \)
  • (B) \( 10^3 \)
  • (C) \( 10^4 \)
  • (D) \( 10^5 \)
Correct Answer: (A) \( 10^6 \)
View Solution

Question 73:

If \( \cos^{-1}(x) - \sin^{-1}(x) = \frac{\pi}{6} \), then find \( x \).

  • (A) \( \frac{1}{2} \)
  • (B) \( \frac{\sqrt{3}}{2} \)
  • (C) \( \frac{1}{\sqrt{2}} \)
  • (D) \( \frac{\sqrt{2}}{2} \)
Correct Answer: (A) \( \frac{1}{2} \)
View Solution

Question 74:

If \( n(A) = 7 \) and the number of relations from A to B is 128. Then find \( n(B) \).

  • (A) \( 7 \)
  • (B) \( 8 \)
  • (C) \( 16 \)
  • (D) \( 14 \)
Correct Answer: (C) \( 16 \)
View Solution

Question 75:

Evaluate the integral:
\[ \int \frac{1}{x(x^4 + 1)} \, dx \]

  • (A) \( \frac{1}{2} \log |x| \)
  • (B) \( \frac{1}{2} \log |x^4 + 1| \)
  • (C) \( \frac{1}{x^4 + 1} \)
  • (D) \( \frac{1}{2} \log |x^2 + 1| \)
Correct Answer: (B) \( \frac{1}{2} \log |x^4 + 1| \)
View Solution

Question 76:

If \( | \vec{a} | = 3 \), \( | \vec{b} | = 2 \), then find \( (3\vec{a} - 2\vec{b}) \cdot (3\vec{a} + 2\vec{b}) \).

  • (A) \( 27 \)
  • (B) \( 0 \)
  • (C) \( 15 \)
  • (D) \( 25 \)
Correct Answer: (D) \( 25 \)
View Solution

Question 77:

Evaluate the integral:
\[ \int \frac{\sec^2(\sqrt{2x+5})}{\sqrt{2x+5}} \, dx \]

  • (A) \( \frac{1}{2} \log |2x + 5| \)
  • (B) \( \frac{1}{\sqrt{2x+5}} \)
  • (C) \( \frac{1}{2} \sec^2(\sqrt{2x+5}) \)
  • (D) \( \frac{1}{\sqrt{2x+5}} + C \)
Correct Answer: (A) \( \frac{1}{2} \log |2x + 5| \)
View Solution

Question 78:

The value of \( i^3 + i^4 + i^5 + \ldots + i^{93 is:

  • (A) \( 0 \)
  • (B) \( 1 \)
  • (C) \( -1 \)
  • (D) \( 2 \)
Correct Answer: (A) \( 0 \)
View Solution

Question 79:

If \( |\vec{a}| = 5 \), \( |\vec{b}| = 8 \), \( |\vec{a} - \vec{b}| = 7 \), find the angle between \( \vec{a} \) and \( \vec{b} \).

  • (A) \( 60^\circ \)
  • (B) \( 45^\circ \)
  • (C) \( 30^\circ \)
  • (D) \( 90^\circ \)
Correct Answer: (C) \( 30^\circ \)
View Solution

Question 80:

Find the value of
\[ \cot^{-1}(1) + \cot^{-1}(2) + \cot^{-1}(3) \]

  • (A) \( \frac{\pi}{2} \)
  • (B) \( \pi \)
  • (C) \( \frac{\pi}{4} \)
  • (D) \( 2\pi \)
Correct Answer: (B) \( \pi \)
View Solution

KEAM 2025 Subject Wise Weightage

Mathematics carries the highest weightage of 50% in the KEAM 2025 exam. A total of 60 questions are asked from Mathematics.

Chemistry carries the least weightage of 16.6%. Easy questions are asked from this section as compared to Physics and Mathematics.

Subject No. of Questions Total Marks Weightage
Physics 45 180 33.3%
Chemistry 30 180 16.6%
Mathematics 60 240 50%
Total 150 600 100%

KEAM 2025 Paper Analysis

KEAM 2025 Difficulty Level (Expected)

Based on the previous year KEAM difficulty level data, the following can be expected for KEAM 2025:

Physics is expected to be tough and lengthy due to the numerical problems. Thorough conceptual knowledge and good time management are required.

Chemistry will be of easy to moderate difficulty level. Candidates can maximize their overall scores in this section.

Mathematics is expected to be of moderate difficulty level. Candidates can score easily if they have a thorough formula based knowledge.

Subject Difficulty Level
Physics Moderate to Difficult
Chemistry Easy to Moderate
Mathematics Moderate

Fees Structure

Structure based on different categories

CategoriesState
General1000
sc500

In case of any inaccuracy, Notify Us! 

Comments


No Comments To Show