Differential equations is an important topic in the Mathematics section in VITEEE exam. Practising this topic will increase your score overall and make your conceptual grip on VITEEE exam stronger.
This article gives you a full set of VITEEE PYQs for Differential equations with explanations for effective preparation. Practice of VITEEE Mathematics PYQs including Differential equations questions regularly will improve accuracy, speed, and confidence in the VITEEE 2026 exam.
Also Read

VITEEE PYQs for Differential equations with Solutions
1.
If \[ \sin x + \cos x = \frac{1}{5} \] then \( \tan 2x \) is:
- \( \frac{25}{17} \)
- \( \frac{7}{25} \)
- \( \sqrt{\frac{25}{7}} \)
- \( \frac{24}{7} \)
2.
Negation of the Boolean expression \[ p \Leftrightarrow (q \Rightarrow p) \] is:- \( \sim p \wedge q \)
- \( p \wedge \sim q \)
- \( \sim p \vee \sim q \)
- \( \sim p \wedge \sim q \)
3.
The function \( f(x) \) is given by:
\[ f(x) = \begin{cases} x \sin \left( \frac{1}{x} \right), & \text{for } x \neq 0 \\ 0, & \text{for } x = 0 \end{cases} \]- continuous as well as differentiable
- differentiable but not continuous
- continuous but not differentiable
- neither continuous nor differentiable
4.
The length of the perpendicular from the point \( (1, -2, 5) \) on the line passing through \( (1, 2, 4) \) and parallel to the line given by \( x + y - z = 0 \) and \( x - 2y + 3z - 5 = 0 \) is:- \( \frac{\sqrt{21}}{2} \)
- \( \frac{\sqrt{9}}{2} \)
- \( \frac{\sqrt{73}}{2} \)
- 1
5.
In $\triangle ABC$, the midpoints of the sides $AB$, $BC$, and $CA$ are respectively $(1, 0, 0)$, $(0, m, 0)$, and $(0, 0, n)$. Then, $$ \frac{AB^2 + BC^2 + CA^2}{1^2 + m^2 + n^2} \text{ is equal to:} $$- 8
- 16
- 9
- 25
6.
The coordinates of the point which divides the line segment joining the points \( (2, -1, 3) \) and \( (4, 3, 1) \) internally in the ratio \( 3:4 \) are:
- \( \left( \frac{2}{7}, \frac{20}{7}, \frac{10}{7} \right) \)
- \( \left( \frac{10}{7}, \frac{15}{7}, \frac{2}{7} \right) \)
- \( \left( \frac{20}{7}, \frac{5}{7}, \frac{15}{7} \right) \)
- \( \left( \frac{15}{7}, \frac{20}{7}, \frac{3}{7} \right) \)
7.
The area of the region bounded by the ellipse $$\frac{x^2}{16} + \frac{y^2}{9} = 1$$ is:
- \( 12\pi \)
- \( 3\pi \)
- \( 24\pi \)
- \( \pi \)
8.
The number of distinct real roots of the equation: \[ x^7 - 7x - 2 = 0 \] is:- 5
- 7
- 1
- 3
9.
The minimum value of the function \[ y = x^4 - 2x^2 + 1 \] in the interval \( \left[\frac{1}{2}, 2 \right] \) is:- \( 0 \)
- \( 2 \)
- \( 8 \)
- \( 9 \)
10.
Evaluate: \[ \tan (\cos^{-1} \frac{4}{5}) + \tan^{-1} \frac{2}{3} \]- \( \frac{6}{17} \)
- \( \frac{7}{16} \)
- \( \frac{16}{7} \)
- None of these
11.
If \[ R = \{ (x, y) : x \text{ is exactly } 7\text{cm taller than } y \} \] then \( R \) is:- Not symmetric
- Reflexive
- Symmetric but not transitive
- An equivalence relation
12.
If \[ \frac{a^n + b^n}{a^{n-1} + b^{n-1}} \] is the arithmetic mean (A.M.) between \( a \) and \( b \), then the value of \( n \) is:- 1
- 2
- 3
- 4
13.
If

then \( {Adj} (A) \) is equal to:
14.
The point \( (t^2 + 2t + 5, 2t^2 + t - 2) \) { lies on the line} \( x + y = 2 \) { for:}- All real values of \( t \)
- Some real values of \( t \)
- \( t = -3 \pm \frac{\sqrt{3}}{6} \)
- None of these
15.
The integral \[ \int x^n (1 + \log x) \, dx \] is equal to:
- \( x^n + C \)
- \( x^{2x} + C \)
- \( x^n \log x + C \)
- \( \frac{1}{2}(1 + \log x)^2 + C \)








Comments