KEAM 2024 Question Paper with Answer Key (June 6)

Ratnam Agarwal's profile photo

Ratnam Agarwal

Content Writer| Mechanical Engineer| Engineering Specialist | Updated 3+ months ago

KEAM 2024 Question Paper (June 6) is available for download here. Office of The Commissioner for Entrance Examinations (CEE Kerala) conducted KEAM Engineering exam 2024 in CBT mode on June 6 in afternoon shift from 2 PM to 5 PM. KEAM Engineering 2024 Question Paper consists total of 150 questions carrying 4 mark each with negative marking of 1 for each incorrect answer. KEAM 2024 Question Paper includes Mathematics with 75 questions, Physics with 45 questions and Chemistry with 30 questions to be attempted in total of 180 minutes.

KEAM 2024 Question Paper with Answer Key PDF (June 6)

KEAM 2024 (June 6) Question Paper with Answer Key download iconDownload Check Solution

KEAM 2024 Question Paper with Answer Key PDF (June 6)


Question 1:

If the time period \( T \) of a satellite revolving close to the earth is given as \( T = 2\pi R^a g^b \), then the value of \( a \) and \( b \) are respectively (where \( R \) is the radius of the earth):

  • (A) \( -\frac{1}{2} \) and \( -\frac{1}{2} \)
  • (B) \( \frac{1}{2} \) and \( -\frac{1}{2} \)
  • (C) \( \frac{1}{2} \) and \( \frac{1}{2} \)
  • (D) \( \frac{3}{2} \) and \( -\frac{1}{2} \)
  • (E) \( -\frac{1}{2} \) and \( \frac{1}{2} \)
Correct Answer: (B) \( \frac{1}{2} \) and \( -\frac{1}{2} \)
View Solution

Question 2:

The angle between \( \vec{A} \times \vec{B} \) and \( \vec{B} \times \vec{A} \) is:

  • (A) \( 90^\circ \)
  • (B) \( 60^\circ \)
  • (C) \( 180^\circ \)
  • (D) \( 0^\circ \)
  • (E) \( 270^\circ \)
Correct Answer:(C) \( 180^\circ \)
View Solution

Question 3:

If the initial speed of the car moving at constant acceleration is halved, then the stopping distance \( S \) becomes:

  • (A) \( 2S \)
  • (B) \( \frac{S}{2} \)
  • (C) \( 4S \)
  • (D) \( \frac{S}{4} \)
  • (E) \( \frac{S}{8} \)
Correct Answer:(D) \( \frac{S}{4} \)
View Solution

Question 4:

When a cricketer catches a ball in 30 s, the force required is 2.5 N. The force required to catch that ball in 50 s is:

  • (A) 1.5 N
  • (B) 1 N
  • (C) 2.5 N
  • (D) 3 N
  • (E) 5 N
Correct Answer: (A) 1.5 N
View Solution

Question 5:

A ball is thrown vertically upwards with an initial speed of 20 ms\(^{-1}\). The velocity (in ms\(^{-1}\)) and acceleration (in ms\(^{-2}\)) at the highest point of its motion are respectively:

  • (A) 20 and 9.8
  • (B) 0 and 9.8
  • (C) 0 and 0
  • (D) 10 and 9.8
  • (E) 0 and 4.9
Correct Answer: (B) 0 and 9.8
View Solution

Question 6:

Which one is an INCORRECT statement?

  • (A) Forces always occur in pairs
  • (B) Impulsive force is a force that acts for a shorter duration
  • (C) Impulse is the change in momentum of the body
  • (D) Momentum and change in momentum both have the same direction
  • (E) Action and reaction forces act on different bodies
Correct Answer: (D) Momentum and change in momentum both have the same direction
View Solution

Question 7:

Impending motion is opposed by:

  • (A) Static friction
  • (B) Fluid friction
  • (C) Sliding friction
  • (D) Kinetic friction
  • (E) Rolling friction
Correct Answer: (A) Static friction
View Solution

Question 8:

A block of 50 g mass is connected to a spring of spring constant 500 Nm\(^{-1}\). It is extended to the maximum and released. If the maximum speed of the block is 3 ms\(^{-1}\), then the length of extension is:

  • (A) 4 cm
  • (B) 1 cm
  • (C) 2.5 cm
  • (D) 3 cm
  • (E) 5 cm
Correct Answer: (D) 3 cm
View Solution

Question 9:

A particle is displaced from P \( (3i + 2j - k) \) to Q \( (2i + 2j + 2k) \) by a force \( \mathbf{F} = i + j + k \). The work done on the particle (in J) is:

  • (A) 2
  • (B) 1
  • (C) 2.5
  • (D) 3
  • (E) 5
Correct Answer: (A) 2
View Solution

Question 10:

The motion of a cylinder on an inclined plane is:

  • (A) Rotational but not translational
  • (B) Translational but not rotational
  • (C) Translational but not rolling
  • (D) Rotational, translational and rolling motion
  • (E) Rotational and rolling but not translational motion
Correct Answer: (D) Rotational, translational and rolling motion
View Solution

Question 11:

A flywheel ensures a smooth ride on the vehicle because of its:

  • (A) Larger speed
  • (B) Zero moment of inertia
  • (C) Large moment of inertia
  • (D) Lesser mass with smaller radius
  • (E) Small moment of inertia
Correct Answer: (C) Large moment of inertia
View Solution

Question 12:

The escape speed of the moon when compared with escape speed of the earth is approximately:

  • (A) Twice smaller
  • (B) Thrice smaller
  • (C) 4 times smaller
  • (D) 5 times smaller
  • (E) 6 times smaller
Correct Answer: (D) 5 times smaller
View Solution

Question 13:

The force of gravity is a:

  • (A) Strong force
  • (B) Noncentral force
  • (C) Nonconservative force
  • (D) Contact force
  • (E) Conservative force
Correct Answer: (E) Conservative force
View Solution

Question 14:

The terminal velocity of a small steel ball falling through a viscous medium is:

  • (A) Directly proportional to the radius of the ball
  • (B) Inversely proportional to the radius of the ball
  • (C) Directly proportional to the square of the radius of the ball
  • (D) Directly proportional to the square root of the radius of the ball
  • (E) Inversely proportional to the square of the radius of the ball
Correct Answer: (C) Directly proportional to the square of the radius of the ball
View Solution

Question 15:

The stress required to produce a fractional compression of 1.5% in a liquid having bulk modulus of \( 0.9 \times 10^9 \, Nm^{-2} \) is:

  • (A) \( 2.48 \times 10^7 \, Nm^{-2} \)
  • (B) \( 0.26 \times 10^7 \, Nm^{-2} \)
  • (C) \( 3.72 \times 10^7 \, Nm^{-2} \)
  • (D) \( 1.35 \times 10^7 \, Nm^{-2} \)
  • (E) \( 4.56 \times 10^7 \, Nm^{-2} \)
Correct Answer: (D) \( 1.35 \times 10^7 \, \text{Nm}^{-2} \)
View Solution

Question 16:

When heat is supplied to the gas in an isochoric process, the supplied heat changes its:

  • (A) Volume only
  • (B) Internal energy and volume
  • (C) Internal energy only
  • (D) Internal energy and temperature
  • (E) Temperature only
Correct Answer: (D) Internal energy and temperature
View Solution

Question 17:

1 g of ice at 0°C is converted into water by supplying a heat of 418.72 J. The quantity of heat that is used to increase the temperature of water from 0°C is (Latent heat of fusion of ice = \( 3.35 \times 10^5 \, Jkg^{-1} \)):

  • (A) 83.72 J
  • (B) 33.52 J
  • (C) 335.72 J
  • (D) 837.24 J
  • (E) 418.72 J
Correct Answer: (A) 83.72 J
View Solution

Question 18:

All real gases behave like an ideal gas at:

  • (A) High pressure and low temperature
  • (B) Low temperature and low pressure
  • (C) High pressure and high temperature
  • (D) At all temperatures and pressures
  • (E) Low pressure and high temperature
Correct Answer: (E) Low pressure and high temperature
View Solution

Question 19:

0.5 mole of \( N_2 \) at 27°C is mixed with 0.5 mole of \( O_2 \) at 42°C. The temperature of the mixture is:

  • (A) 42°C
  • (B) 34.5°C
  • (C) 32.5°C
  • (D) 37.5°C
  • (E) 27°C
Correct Answer: (B) 34.5°C
View Solution

Question 20:

A wave with a frequency of 600 Hz and wavelength of 0.5 m travels a distance of 200 m in a time of:

  • (A) 1.67 s
  • (B) 0.67 s
  • (C) 1 s
  • (D) 0.33 s
  • (E) 1.33 s
Correct Answer: (B) 0.67 s
View Solution

Question 21:

If the fundamental frequency of the stretched string of length 1 m under a given tension is 3 Hz, then the fundamental frequency of the stretched string of length 0.75 m under the same tension is:

  • (A) 1 Hz
  • (B) 2 Hz
  • (C) 6 Hz
  • (D) 4 Hz
  • (E) 5 Hz
Correct Answer: (D) 4 Hz
View Solution

Question 22:

The product of the total electric flux emanating from a closed surface enclosing a charge \( q \) in free space is (\( \epsilon_0 \) - electrical permittivity of free space):

  • (A) 1
  • (B) \( \frac{q}{\epsilon_0} \)
  • (C) \( q \)
  • (D) \( q\epsilon_0 \)
  • (E) \( \epsilon_0 \)
Correct Answer: (B) \( \frac{q}{\epsilon_0} \)
View Solution

Question 23:

Three capacitances 1 \(\mu\)F, 4 \(\mu\)F, and 5 \(\mu\)F are connected in parallel with a supply voltage. If the total charge flowing through the capacitors is 50 \(\mu\)C, then the supply voltage is:

  • (A) 2 V
  • (B) 10 V
  • (C) 6 V
  • (D) 3 V
  • (E) 5 V
Correct Answer: (E) 5 V
View Solution

Question 24:

The resistance of a wire at 0 °C is 4 \(\Omega\). If the temperature coefficient of resistance of the material of the wire is \(5 \times 10^{-3} / ^\circ C\), then the resistance of a wire at 50 °C is:

  • (A) 20 \(\Omega\)
  • (B) 10 \(\Omega\)
  • (C) 6 \(\Omega\)
  • (D) 8 \(\Omega\)
  • (E) 5 \(\Omega\)
Correct Answer: (E) 5 \(\Omega\)
View Solution

Question 25:

n number of electrons flowing in a copper wire for 1 minute constitute a current of 0.5 A. Twice the number of electrons flowing through the same wire for 20 s will constitute a current of:

  • (A) 0.25 A
  • (B) 3 A
  • (C) 1 A
  • (D) 1.25 A
  • (E) 2.25 A
Correct Answer: (B) 3 A
View Solution

Question 26:

If a cell of 12 V emf delivers 2 A current in a circuit having a resistance of 5.8 \(\Omega\), then the internal resistance of the cell is:

  • (A) 1 \(\Omega\)
  • (B) 0.2 \(\Omega\)
  • (C) 0.3 \(\Omega\)
  • (D) 0.6 \(\Omega\)
  • (E) 0.8 \(\Omega\)
Correct Answer: (B) 0.2 \(\Omega\)
View Solution

Question 27:

Torque on a coil carrying current \( I \) having \( N \) turns and area of cross section \( A \) when placed with its plane perpendicular to a magnetic field \( B \) is:

  • (A) \( 2NBI A \)
  • (B) \( \frac{NBI A}{3} \)
  • (C) 0
  • (D) \( \frac{NBI A}{2} \)
  • (E) \( NBI A \)
Correct Answer: (C) 0
View Solution

Question 28:

A long straight wire carrying a current 3 A produces a magnetic field \( B \) at a certain distance. The current that flows through the same wire will produce a magnetic field \( \frac{B}{3} \) at the same distance is:

  • (A) 1.5 A
  • (B) 1 A
  • (C) 2.5 A
  • (D) 3 A
  • (E) 5 A
Correct Answer: (B) 1 A
View Solution

Question 29:

Which one of the following statement is INCORRECT?

  • (A) Isolated magnetic poles do not exist
  • (B) Magnetic field lines do not intersect
  • (C) Moving charges do not produce magnetic field in the surrounding space
  • (D) Magnetic field lines always form closed loops
  • (E) Magnetic force on a negative charge is opposite to that on a positive charge
Correct Answer: (C) Moving charges do not produce magnetic field in the surrounding space
View Solution

Question 30:

When a current passing through a coil changes at a rate of 30 A s\(^{-1}\), the emf induced in the coil is 12 V. If the current passing through this coil changes at a rate of 20 A s\(^{-1}\), the emf induced in this coil is:

  • (A) 8 V
  • (B) 10 V
  • (C) 2.5 V
  • (D) 3 V
  • (E) 5 V
Correct Answer: (A) 8 V
View Solution

Question 31:

The reactance of an induction coil of 4 H for a dc current (in \( \Omega \)) is:

  • (A) zero
  • (B) \( 4\pi \)
  • (C) \( 40\pi \)
  • (D) \( 400\pi \)
  • (E) infinity
Correct Answer: (A) zero
View Solution

Question 32:

If the total momentum delivered to a surface by an EM wave is \(3 \times 10^{-4}\) kg m/s, then the total energy transferred to this surface is:

  • (A) \( 3 \times 10^4 \, J \)
  • (B) \( 4.5 \times 10^4 \, J \)
  • (C) \( 6 \times 10^4 \, J \)
  • (D) \( 2 \times 10^4 \, J \)
  • (E) \( 9 \times 10^4 \, J \)
Correct Answer: (A) \( 3 \times 10^4 \, \text{J} \)
View Solution

Question 33:

The radiations used in LASIK eye surgery are:

  • (A) IR radiations
  • (B) micro waves
  • (C) radio waves
  • (D) gamma rays
  • (E) UV radiations
Correct Answer: (E) UV radiations
View Solution

Question 34:

When two coherent sources each of individual intensity \( I_0 \) interfere, the resultant intensity due to constructive and destructive interference are respectively

  • (A) \( 4I_0 and 0 \)
  • (B) \( I_0 and 2I_0 \)
  • (C) \( 0 and 2I_0 \)
  • (D) \( 2I_0 and I_0 \)
  • (E) \( 2I_0 and 0 \)
Correct Answer: (A) \( 4I_0 \text{ and } 0 \)
View Solution

Question 35:

If the power of a lens is +4 D, then the lens is a

  • (A) convex lens of focal length 25 cm
  • (B) concave lens of focal length 25 cm
  • (C) concave lens of focal length 40 cm
  • (D) convex lens of focal length 50 cm
  • (E) concave lens of focal length 20 cm
Correct Answer: (A) convex lens of focal length 25 cm
View Solution

Question 36:

In a single slit diffraction experiment, the width of the slit and the wavelength of the light are respectively 5 mm and 500 nm. If the focal length of the lens is 20 cm, then the size of the central bright fringe will be

  • (A) \( 5 \times 10^{-5} \, m \)
  • (B) \( 3 \times 10^{-5} \, m \)
  • (C) \( 2.5 \times 10^{-5} \, m \)
  • (D) \( 2 \times 10^{-5} \, m \)
  • (E) \( 1 \times 10^{-5} \, m \)
Correct Answer: (D) \( 2 \times 10^{-5} \, \text{m} \)
View Solution

Question 37:

A particle having mass 2000 times that of an electron travels with a velocity thrice that of the electron. The ratio of the de Broglie wavelength of the particle to that of the electron is

  • (A) \( \frac{1}{3000} \)
  • (B) \( \frac{1}{2000} \)
  • (C) \( \frac{1}{6000} \)
  • (D) \( \frac{1}{8000} \)
  • (E) \( \frac{1}{1500} \)
Correct Answer: (C) \( \frac{1}{6000} \)
View Solution

Question 38:

The process by which the electrons can come out of the metal in a spark plug is:

  • (A) field emission
  • (B) ionic emission
  • (C) secondary emission
  • (D) thermionic emission
  • (E) photoelectric emission
Correct Answer: (A) field emission
View Solution

Question 39:

The energy required to excite the hydrogen atom from its first excited state to second excited state is:

  • (A) 12.09 eV
  • (B) 1.89 eV
  • (C) 10.2 eV
  • (D) 3.40 eV
  • (E) 1.51 eV
Correct Answer: (B) 1.89 eV
View Solution

Question 40:

If the maximum number of neighbours of a nucleon within the range of nuclear force is \( p \) and \( k \) is a constant, then the binding energy per nucleon is approximately:

  • (A) \( p^2 k \)
  • (B) \( p k \)
  • (C) \( p^{1/2} k \)
  • (D) \( p^{1/3} k \)
  • (E) \( p^3 k \)
Correct Answer: (B) \( p k \)
View Solution

Question 41:

In gamma emission, the nucleus emits

  • (A) a photon
  • (B) a neutron
  • (C) a neutrino
  • (D) an electron
  • (E) a positron
Correct Answer: (A) a photon
View Solution

Question 42:

If the initial decay rate of a radioactive sample is \( R_0 \), then the decay rate after a half-life time \( T_{1/2} \) is

  • (A) \( 2R_0 \)
  • (B) \( R_0 \)
  • (C) \( \sqrt{R_0} \)
  • (D) \( 3R_0 \)
  • (E) \( \frac{R_0}{2} \)
Correct Answer: (E) \( \frac{R_0}{2} \)
View Solution

Question 43:

An external voltage \( V \) is supplied to a semiconductor diode having built-in potential \( V_0 \). The effective barrier height under forward bias is

  • (A) \( V_0 + V \)
  • (B) \( \frac{V_0 + V}{2} \)
  • (C) \( V_0 - V \)
  • (D) \( \frac{V_0 - V}{2} \)
  • (E) \( 2V_0 + V \)
Correct Answer: (C) \( V_0 - V \)
View Solution

Question 44:

If the conductivity of the material lies in the range \(10^2 - 10^8 \, \Omega^{-1}m^{-1}\), then it is a

  • (A) insulator
  • (B) semiconductor
  • (C) superconductor
  • (D) dielectric
  • (E) metal
Correct Answer: (E) metal
View Solution

Question 45:

The thickness of the depletion layer on either side of the p-n junction is of the order of

  • (A) \( \mu m \)
  • (B) cm
  • (C) mm
  • (D) nm
  • (E) m
Correct Answer: (A) \( \mu m \)
View Solution

Question 46:

The unit of an universal constant is cm\(^{-1}\). What is the constant?

  • (A) Planck's constant
  • (B) Boltzmann constant
  • (C) Rydberg constant
  • (D) Avogadro constant
  • (E) Molar gas constant
Correct Answer: (C) Rydberg constant
View Solution

Question 47:

Which of the following molecule has the most polar bond?

  • (A) Cl\(_2\)
  • (B) HCl
  • (C) PCl\(_3\)
  • (D) N\(_2\)
  • (E) HF
Correct Answer: (E) HF
View Solution

Question 48:

ΔS would be negative for which of the following reactions?

  • (I) \( CaCO_3(s) \rightarrow CaO(s) + CO_2(g) \)
  • (A) I and III only
  • (B) II and III only
  • (C) I only
  • (D) III only
  • (E) I, II, and III
Correct Answer: (B) II and III only
View Solution

Question 49:

Equal volumes of pH 3, 4, and 5 are mixed in a container. The concentration of \( H^+ \) in the mixture is (Assume there is no change in the volume during mixing):

  • (A) \( 1 \times 10^{-3} \, M \)
  • (B) \( 3.7 \times 10^{-4} \, M \)
  • (C) \( 1 \times 10^{-4} \, M \)
  • (D) \( 3.7 \times 10^{-5} \, M \)
  • (E) \( 3 \times 10^{-5} \, M \)
Correct Answer: (B) \( 3.7 \times 10^{-4} \, \text{M} \)
View Solution

Question 50:

The reaction \( H_2O(g) + Cl_2O(g) \rightleftharpoons 2 HOCl(g) \) is allowed to attain equilibrium at 400K. At equilibrium, the partial pressure of \( H_2O(g) \) is 300 mm of Hg, and those of \( Cl_2O(g) \) and \( HOCl(g) \) are 20 mm and 60 mm respectively. The value of \( K_p \) for the reaction at 300K is:

  • (A) 36
  • (B) 6.0
  • (C) 60
  • (D) 3.6
  • (E) 0.60
Correct Answer: (E) 0.60
View Solution

Question 51:

Strong intra-molecular hydrogen bond is present in:

  • (A) water
  • (B) hydrogen fluoride
  • (C) o-cresol
  • (D) o-nitrophenol
  • (E) ammonia
Correct Answer: } (D) o-nitrophenol
View Solution

Question 52:

Which of the following molecule has a Lewis structure that does not obey the octet rule?

  • (A) HCN
  • (B) CS\(_2\)
  • (C) NO
  • (D) CCl\(_4\)
  • (E) PF\(_3\)
Correct Answer: (C) NO
View Solution

Question 53:

The rate and the rate constant of a reaction has the same units. The order of the reaction is

  • (A) one
  • (B) two
  • (C) three
  • (D) zero
  • (E) half
Correct Answer: (D) zero
View Solution

Question 54:

For the reaction \( 2A + B \rightarrow 2C + D \), the following kinetic data were obtained for three different experiments performed at the same temperature.





The total order and order in [B] for the reaction are respectively

  • (A) 2,1
  • (B) 1,1
  • (C) 1,2
  • (D) 2,2
  • (E) 2,0
Correct Answer: (E) 2,0
View Solution

Question 55:

The standard molar entropies of \( SO_2(g) \), \( SO_3(g) \), and \( O_2(g) \) are 250 J/K·mol, 257 J/K·mol, and 205 J/K·mol respectively. Calculate standard molar entropy change for the reaction \( 2SO_2(g) + O_2(g) \rightarrow 2SO_3(g) \).

  • (A) -198 J/K·mol
  • (B) -191 J/K·mol
  • (C) 198 J/K·mol
  • (D) 191 J/K·mol
  • (E) -1219 J/K·mol
Correct Answer: (B) -191 J/K·mol
View Solution

Question 56:

An aqueous solution contains 20g of a non-volatile strong electrolyte \( A_2B \) (Molar mass = 60 g mol\(^{-1}\)) in 1 kg of water. If the electrolyte is 100% dissociated at this concentration, what is the boiling point of the solution? (Kb of water is 0.52 K kg mol\(^{-1}\))

  • (A) 372.482 K
  • (B) 374.56 K
  • (C) 373.52 K
  • (D) 371.44 K
  • (E) 374.02 K
Correct Answer: (C) 373.52 K
View Solution

Question 57:

An organic compound contains 37.5% C, 12.5% H and the rest oxygen. What is the empirical formula of the compound?

  • (A) \( CH_4O \)
  • (B) \( C_2H_3O \)
  • (C) \( CH_3O_2 \)
  • (D) \( C_2H_4O \)
  • (E) \( CH_3O \)
Correct Answer: (A) \( \text{CH}_4\text{O} \)
View Solution

Question 58:

How many grams of HCl will completely react with 17.4g of pure MnO\(_2\) (s) to liberate Cl\(_2\) (g)? (Atomic mass Mn = 55.0; H = 1; Cl = 35.5)

  • (A) 14.6 g
  • (B) 7.3 g
  • (C) 21.9 g
  • (D) 29.2 g
  • (E) 34.8 g
Correct Answer: (D) 29.2 g
View Solution

Question 59:

What is the quantity of current required to liberate 16g of O\(_2\) (g) during electrolysis of water? (Given 1F = 96500C)

  • (A) \(4.825 \times 10^4 \, C\)
  • (B) \(9.65 \times 10^4 \, C\)
  • (C) \(2.895 \times 10^5 \, C\)
  • (D) \(4.825 \times 10^5 \, C\)
  • (E) \(1.93 \times 10^5 \, C\)
Correct Answer: (E) \(1.93 \times 10^5 \, C\)
View Solution

Question 60:

Co-ordination compounds exhibit different types of isomerism. Some complexes are given in Column I and type of isomerism is given in Column II.


  • (A) (a)-(ii), (b)-(iv), (c)-(i), (d)-(iii)
  • (B) (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii)
  • (C) (a)-(iv), (b)-(iii), (c)-(ii), (d)-(ii)
  • (D) (a)-(iv), (b)-(ii), (c)-(iii), (d)-(ii)
  • (E) (a)-(iii), (b)-(ii), (c)-(iv), (d)-(i)
Correct Answer: } (C) (a)-(iv), (b)-(iii), (c)-(ii), (d)-(ii)
View Solution

Question 61:

Which of the following amines will not undergo carblyamine reaction?

  • (A) N-methylthanamine
  • (B) Phenylmethanamine
  • (C) Aniline
  • (D) Ethanamine
  • (E) Propan-2-amine
Correct Answer: (A) N-methylthanamine
View Solution

Question 62:

The 3d block metal having positive standard electrode potential (M\(^{2+}\)/M) is

  • (A) Titanium
  • (B) Vanadium
  • (C) Iron
  • (D) Copper
  • (E) Chromium
Correct Answer: (D) Copper
View Solution

Question 63:

Which of the following statement is incorrect with regard to interstitial compounds of transition elements?

  • (A) They have high melting points.
  • (B) They are very hard.
  • (C) They have metallic conductivity.
  • (D) They are chemically inert.
  • (E) They are stoichiometric compounds.
Correct Answer: (E) They are stoichiometric compounds.
View Solution

Question 64:

The alloy containing about 95% lanthanoids, 5% iron and traces of S, C, Ca and Al which is used in producing Mg-based bullets is:

  • (A) bell metal
  • (B) monel metal
  • (C) misch metal
  • (D) bronze
  • (E) german silver
Correct Answer: (C) misch metal
View Solution

Question 65:

The IUPAC name of the complex \([Cr(NH_3)_3(H_2O)_3]Cl_3\) is:

  • (A) \(triaquatriamminechromium(III) chloride \)
  • (B) \(triammnetriaquachromium(III) chloride \)
  • (C) \(triaquatriamminechromium(II) chloride \)
  • (D) \(triammnetriaquachromium(II) chloride \)
  • (E) \(triaquatriamminechromium(III) trichloride \)
Correct Answer: (B) \(\text{triammnetriaquachromium(III) chloride}\)
View Solution

Question 66:

In the Carius method of estimation of halogen, 0.4g of an organic compound gave 0.188g of AgBr. What is the percentage of bromine in the organic compound? (The atomic mass of Ag = 108 g mol\(^{-1}\) \& Br = 80 g mol\(^{-1}\))

  • (A) \(20%\)
  • (B) \(10%\)
  • (C) \(15%\)
  • (D) \(25%\)
  • (E) \(30%\)
Correct Answer: (A) \(20%\)
View Solution

Question 67:

Which one of the following compounds can exhibit both optical isomerism and geometrical isomerism?

  • (A) \(2-chloropent-2-ene \)
  • (B) \(5-chloropent-2-ene \)
  • (C) \(4-chloropent-2-ene \)
  • (D) \(3-chloropent-1-ene \)
  • (E) \(3-chloropent-2-ene \)
Correct Answer: (C) \(\text{4-chloropent-2-ene}\)
View Solution

Question 68:

Which one of the following nucleophiles is an ambident nucleophile?

  • (A) \(CH_3O^-\)
  • (B) \(HO^-\)
  • (C) \(CH_3COO^-\)
  • (D) \(H_2O\)
  • (E) \(CN^-\)
Correct Answer: (E) \(\text{CN}^-\)
View Solution

Question 69:

Choose the achiral molecule in the following:

  • (A) \(2-bromobutane \)
  • (B) \(3-nitropentane \)
  • (C) \(3-chlorobut-1-ene \)
  • (D) \(1-bromoethanol \)
  • (E) \(2-hydroxypropanoic acid \)
Correct Answer: (B) \(\text{3-nitropentane}\)
View Solution

Question 70:

Phenol can be converted to salicylaldehyde by:

  • (A) \(Kolbe reaction \)
  • (B) \(Williamson reaction \)
  • (C) \(Etard reaction \)
  • (D) \(Reimer-Tiemann reaction \)
  • (E) \(Stephen reaction \)
Correct Answer: (D) \(\text{Reimer-Tiemann reaction}\)
View Solution

Question 71:

The order of decreasing acid strength of carboxylic acids is:

  • (A) \(FCH_2COOH > ClCH_2COOH > NO_2CH_2COOH > CNCH_2COOH \)
  • (B) \(CNCH_2COOH > FCH_2COOH > NO_2CH_2COOH > ClCH_2COOH \)
  • (C) \(NO_2CH_2COOH > FCH_2COOH > ClCH_2COOH > CNCH_2COOH \)
  • (D) \(FCH_2COOH > NO_2CH_2COOH > ClCH_2COOH > CNCH_2COOH \)
  • (E) \(NO_2CH_2COOH > CNCH_2COOH > FCH_2COOH > ClCH_2COOH \)
Correct Answer: (E) \(\text{NO}_2\text{CH}_2\text{COOH} > \text{CNCH}_2\text{COOH} > \text{FCH}_2\text{COOH} > \text{ClCH}_2\text{COOH} \)
View Solution

Question 72:

Chlorophenylmethane is treated with ethanolic NaCN and the product obtained is reduced with H\(_2\) in the presence of finely divided nickel to give:

  • (A) Phenylmethanamine
  • (B) 1-phenylethanamine
  • (C) 2-phenylethanamine
  • (D) 1-methyl-2-phenylethanamine
  • (E) phenylmethanamine
Correct Answer: (C) 2-phenylethanamine
View Solution

Question 73:

A reagent that can be used to reduce benzene diazonium chloride to benzene is:

  • (A) ethanol
  • (B) methanol
  • (C) methanoic acid
  • (D) acetone
  • (E) phosphorous acid
Correct Answer: (A) ethanol
View Solution

Question 74:

Which one of the following is not an essential amino acid?

  • (A) Lysine
  • (B) Tyrosine
  • (C) Threonine
  • (D) Tryptophan
  • (E) Methionine
Correct Answer: (B) Tyrosine
View Solution

Question 75:

14g of cyclopropane burnt completely in excess oxygen. The number of moles of water formed is:

  • (A) 1.4 moles
  • (B) 2.8 moles
  • (C) 2.0 moles
  • (D) 1.0 mole
  • (E) 4 moles
Correct Answer: (D) 1.0 mole
View Solution

Question 76:

Let \( f(x) = \log_e(x) \) and let \( g(x) = \frac{x - 2}{x^2 + 1} \). Then the domain of the composite function \( f \circ g \) is:

  • (A) \( (2, \infty) \)
  • (B) \( (-1, \infty) \)
  • (C) \( (0, \infty) \)
  • (D) \( (1, \infty) \)
  • (E) \( (1, 0) \)
Correct Answer: (A) \( (2, \infty) \)
View Solution

Question 77:

Let \( S \) denote the set of all subsets of integers containing more than two numbers. A relation \( R \) on \( S \) is defined by \[ R = \{ (A, B) : the sets A and B have at least two numbers in common \}. \]
Then the relation \( R \) is:

  • (A) reflexive, symmetric and transitive
  • (B) reflexive and symmetric but not transitive
  • (C) not reflexive, not symmetric and not transitive
  • (D) not reflexive but symmetric and transitive
  • (E) reflexive but not symmetric and transitive
Correct Answer: (B) reflexive and symmetric but not transitive
View Solution

Question 78:

For two sets \( A \) and \( B \), we have \( n(A \cup B) = 50 \), \( n(A \cap B) = 12 \), and \( n(A - B) = 15 \). Then \( n(B - A) \) is equal to:

  • (A) 27
  • (B) 35
  • (C) 38
  • (D) 29
  • (E) 23
Correct Answer: (E) 23
View Solution

Question 79:

The value of \[ \left(\frac{10i}{(2-i)(3-i)}\right)^{2024} \]
is equal to:

  • (A) \(2^{2024}\)
  • (B) \(2^{1012}\)
  • (C) \(4^{2024}\)
  • (D) \(\left(\frac{1}{2}\right)^{2024}\)
  • (E) \(\left(\frac{1}{2}\right)^{1012}\)
Correct Answer: (B) \(2^{1012}\)
View Solution

Question 80:

The period of the function \( f(x) = \sin\left( \frac{3x}{2} \right) \) is equal to:

  • (A) \( \frac{4\pi}{3} \)
  • (B) \( \frac{2\pi}{3} \)
  • (C) \( \frac{\pi}{3} \)
  • (D) \( 3\pi \)
  • (E) \( 2\pi \)
Correct Answer: (A) \( \frac{4\pi}{3} \)
View Solution

Question 81:

The value of \( \alpha \) for which the complex number \( \frac{2 - \alpha i}{\alpha - i} \) is purely imaginary, is:

  • (A) 2
  • (B) -2
  • (C) 1
  • (D) -1
  • (E) 0
Correct Answer: (E) 0
View Solution

Question 82:

The centre of a square is at the origin of the complex plane. If one of the vertices is at \( -3i \), then the area of the square is:

  • (A) 9
  • (B) 12
  • (C) 18
  • (D) 24
  • (E) 27
Correct Answer: (C) 18
View Solution

Question 83:

The modulus of the complex number \[ \frac{(1 + i)^{10} (2 - i)^6}{(2i - 4)^4} \]
is equal to:

  • (A) 8
  • (B) 10
  • (C) 16
  • (D) 30
  • (E) 32
Correct Answer:(B) 10
View Solution

Question 84:

If \( 0 \leq x \leq 5 \), then the greatest value of \( \alpha \) and the least value of \( \beta \) satisfying the inequalities \( \alpha \leq 3x + 5 \leq \beta \) are, respectively,

  • (A) \(0,5\)
  • (B) \(10,15\)
  • (C) \(5,10\)
  • (D) \(5,15\)
  • (E) \(5,20\)
Correct Answer: (E) \(5,20\)
View Solution

Question 85:

Let \( A = \begin{pmatrix} 3 & -2 & 1
-1 & 3 & -1 \end{pmatrix} \) and \( B = \begin{pmatrix} 1
\alpha
-1 \end{pmatrix} \). If \( AB = \begin{pmatrix} -2
6 \end{pmatrix} \), then the value of \( \alpha \) is equal to:

  • (A) -1
  • (B) 1
  • (C) -2
  • (D) 2
  • (E) 0
Correct Answer: (D) 2
View Solution

Question 86:

If \( 2 \) is a solution of the inequality \( \frac{x-a}{a-2x} < -3 \), then \( a \) must lie in the interval:

  • (A) \( (4,5) \)
  • (B) \( (2,5) \)
  • (C) \( (4,10) \)
  • (D) \( (2,10) \)
  • (E) \( (0,10) \)
Correct Answer: (A) \( (4,5) \)
View Solution

Question 87:

The coefficient of \( x^{14}y \) in the expansion of \( (x^2 + \sqrt{y})^9 \) is:

  • (A) 84
  • (B) 36
  • (C) 63
  • (D) 252
  • (E) 128
Correct Answer: (B) 36
View Solution

Question 88:

The value of \( x \) that satisfies the equation

  • (A) \(1\)
  • (B) \(2\)
  • (C) \(3\)
  • (D) \(-2\)
  • (E) \(-1\)
Correct Answer: (E) \(-1\)
View Solution

Question 89:

The sum of the series \( \frac{1}{2^{10}} + \frac{1}{2^{11}} + \cdots + \frac{1}{2^{19}} \) is equal to:

  • (A) \( \frac{2^{10} - 1}{2^{21}} \)
  • (B) \( \frac{2^9 - 1}{2^{20}} \)
  • (C) \( \frac{2^{10} - 1}{2^{19}} \)
  • (D) \( \frac{2^9 - 1}{2^{19}} \)
  • (E) \( \frac{2^{10} - 1}{2^{20}} \)
Correct Answer: (C) \( \frac{2^{10} - 1}{2^{19}} \)
View Solution

Question 90:

Let \( A \) and \( B \) be two sets each containing more than one element. If \( n(A \times B) = 155 \), then \( n(A) \) is equal to:

  • (A) 5
  • (B) 3
  • (C) 7
  • (D) 15
  • (E) 25
Correct Answer: (A) 5
View Solution

Question 91:

There are 3 different mathematics books and 4 different physics books in a shelf. Then the number of ways these books can be arranged so that the mathematics books are together is:

  • (A) 144
  • (B) 120
  • (C) 520
  • (D) 720
  • (E) 620
Correct Answer: (D) 720
View Solution

Question 92:

11\( (10P_7) \) =

  • (A) \( 11P_7 \)
  • (B) \( 10P_8 \)
  • (C) \( 11P_8 \)
  • (D) \( 11P_9 \)
  • (E) \( 10P_9 \)
Correct Answer: (C) \( 11P_8 \)
View Solution

Question 93:

The value of the sum \( 15 C_6 + 14 C_6 + 13 C_6 + 12 C_6 + 11 C_6 + 10 C_6 \) is equal to:

  • (A) \( 15 C_7 - 10 C_6 \)
  • (B) \( 15 C_7 - 10 C_7 \)
  • (C) \( 16 C_7 - 10 C_7 \)
  • (D) \( 16 C_7 - 10 C_6 \)
  • (E) \( 16 C_7 - 11 C_6 \)
Correct Answer: } (C) \( 16 C_7 - 10 C_7 \)
View Solution

Question 94:

Let

and let \( B = \frac{1{|A|} A }\).
Then the value of \( |B| \) is equal to:

  • (A) \( \frac{1}{9} \)
  • (B) \( \frac{1}{11} \)
  • (C) \( \frac{1}{81} \)
  • (D) \( \frac{1}{121} \)
  • (E) \( 1 \)
Correct Answer: (C) \( \frac{1}{81} \)
View Solution

Question 95:

Let \( f(x) = 2 - 7 \sin{\left( \frac{2x}{7} \right)} \). Then the maximum value of \( f(x) \) is:

  • (A) -5
  • (B) 5
  • (C) 4
  • (D) 9
  • (E) -9
Correct Answer: (D) 9
View Solution

Question 96:

The second term of a G.P. is \( \frac{1}{2} \). If the product of first five terms is 32, then the common ratio of the G.P. is:

  • (A) \( \frac{1}{4} \)
  • (B) \( 4 \)
  • (C) \( \frac{1}{8} \)
  • (D) \( 8 \)
  • (E) \( \frac{1}{2} \)
Correct Answer: (B) \( 4 \)
View Solution

Question 97:

The first term and the 6th term of a G.P. are 2 and \( \frac{64}{243} \) respectively. Then the sum of first 10 terms of the G.P. is:

  • (A) \( 6 - \frac{2^{11}}{3^9} \)
  • (B) \( 1 - \frac{2^{11}}{3^9} \)
  • (C) \( 6 - \frac{2^{10}}{3^9} \)
  • (D) \( 1 - \frac{2^{10}}{3^9} \)
  • (E) \( 6 - \frac{2^{11}}{3^{10}} \)
Correct Answer: } (A) \( 6 - \frac{2^{11}}{3^9} \)
View Solution

Question 98:

An assignment of probabilities for outcomes of the sample space \( S = \{1, 2, 3, 4, 5, 6\} \) is as follows:

If this assignment is valid, then the value of \( k \) is:

  • (A) \( \frac{1}{34} \)
  • (B) \( \frac{1}{35} \)
  • (C) \( \frac{1}{38} \)
  • (D) \( \frac{1}{37} \)
  • (E) \( \frac{1}{36} \)
Correct Answer: (E) \( \frac{1}{36} \)
View Solution

Question 99:

Three coins are tossed simultaneously. Then the probability that exactly two tails appear is:

  • (A) \( \frac{1}{8} \)
  • (B) \( \frac{1}{4} \)
  • (C) \( \frac{3}{8} \)
  • (D) \( \frac{1}{2} \)
  • (E) \( \frac{5}{8} \)
Correct Answer: (C) \( \frac{3}{8} \)
View Solution

Question 100:

A bag contains 10 green balls and 5 red balls. If two balls are selected randomly, then the probability that both are green balls, is:

  • (A) \( \frac{9}{35} \)
  • (B) \( \frac{2}{7} \)
  • (C) \( \frac{3}{7} \)
  • (D) \( \frac{5}{27} \)
  • (E) \( \frac{2}{15} \)
Correct Answer: (C) \( \frac{3}{7} \)
View Solution

Question 101:

Let \( A, B, C \) be three mutually and exhaustive events of an experiment. If \( 2P(A) = 3P(B) = 4P(C) \), then \( P(C) \) is equal to:

  • (A) \( \frac{3}{13} \)
  • (B) \( \frac{4}{13} \)
  • (C) \( \frac{5}{13} \)
  • (D) \( \frac{6}{13} \)
  • (E) \( \frac{7}{13} \)
Correct Answer: } (A) \( \frac{3}{13} \)
View Solution

Question 102:

Two circles \(C_1\) and \(C_2\) have radii 18 and 12 units, respectively. If an arc of length \( \ell \) of \(C_1\) subtends an angle 80° at the centre, then the angle subtended by an arc of same length \( \ell \) of \(C_2\) at the centre is:

  • (A) 90°
  • (B) 100°
  • (C) 110°
  • (D) 120°
  • (E) 135°
Correct Answer: (D) 120°
View Solution

Question 103:

Given that: \[ \frac{1}{\tan A - \tan B} = \]

  • (A) \( \frac{\sin A \sin B}{\cos(A - B)} \)
  • (B) \( \frac{\sin A \sin B}{\sin(A - B)} \)
  • (C) \( \frac{\cos A - \cos B}{\sin A - \sin B} \)
  • (D) \( \cot A - \cot B \)
  • (E) \( \frac{\cos A \cos B}{\sin(A - B)} \)
Correct Answer: } (E) \( \frac{\cos A \cos B}{\sin(A - B)} \)
View Solution

Question 104:

\[ \cos^{-1} \left( \cos \left( \frac{-7\pi}{9} \right) \right) = \]

  • (A) \(\frac{-7\pi}{9}\)
  • (B) \(\frac{7\pi}{9}\)
  • (C) \(\frac{2\pi}{9}\)
  • (D) \(\frac{-2\pi}{9}\)
  • (E) \(\frac{-4\pi}{9}\)
Correct Answer: (B) \(\frac{7\pi}{9}\)
View Solution

Question 105:

The value of \[ \frac{\cos^{-1}(0) + \sin^{-1}\left( \frac{\sqrt{3}}{2} \right) + \cos^{-1}\left( \frac{1}{2} \right)}{\sin^{-1}(1) + \cos^{-1}\left( \frac{\sqrt{3}}{2} \right) + \sin^{-1}\left( \frac{1}{\sqrt{2}} \right)} \]
is equal to:

  • (A) \( \frac{7}{11} \)
  • (B) \( \frac{11}{12} \)
  • (C) \( \frac{7}{10} \)
  • (D) \( \frac{14}{11} \)
  • (E) \( \frac{7}{5} \)
Correct Answer: } (D) \( \frac{14}{11} \)
View Solution

Question 106:

If \(\sec \theta + \tan \theta = 2 + \sqrt{3}\), then \(\sec \theta - \tan \theta\) is:

  • (A) \(2 - \sqrt{3}\)
  • (B) \(\frac{1}{2 - \sqrt{3}}\)
  • (C) \(\frac{1}{\sqrt{3}}\)
  • (D) \(\frac{2}{\sqrt{3}}\)
  • (E) \(\frac{2}{2 - \sqrt{3}}\)
Correct Answer: (A) \(2 - \sqrt{3}\)
View Solution

Question 107:

If \( a = \frac{1 + \tan \theta + \sec \theta}{2 \sec \theta} \) and \( b = \frac{\sin \theta}{1 - \sec \theta + \tan \theta} \), then \( \frac{a}{b} \) is equal to:

  • (A) 1
  • (B) -1
  • (C) 2
  • (D) -2
  • (E) 0
Correct Answer: (A) 1
View Solution

Question 108:

If \[ \frac{1}{1 - \tan x} = \frac{3 + \sqrt{3}}{2}, \quad 0 \leq x \leq \frac{\pi}{2}, \]
then the value of \( x \) is equal to:

  • (A) \( \frac{\pi}{3} \)
  • (B) \( \frac{\pi}{5} \)
  • (C) \( \frac{\pi}{6} \)
  • (D) \( \frac{\pi}{8} \)
  • (E) \( \frac{\pi}{12} \)
Correct Answer: } (C) \( \frac{\pi}{6} \)
View Solution

Question 109:

If \( a = \tan^{-1}\left(\frac{4}{3}\right) \) and \( b = \tan^{-1}\left(\frac{1}{3}\right) \), where \( 0 < a, b < \frac{\pi}{2} \), then \( a - b \) is:

  • (A) \(\tan^{-1}(3)\)
  • (B) \(\tan^{-1}\left(\frac{3}{13}\right)\)
  • (C) \(\tan^{-1}(5)\)
  • (D) \(\tan^{-1}\left(\frac{9}{13}\right)\)
  • (E) \(\tan^{-1}\left(\frac{5}{13}\right)\)
Correct Answer: (D) \(\tan^{-1}\left(\frac{9}{13}\right)\)
View Solution

Question 110:

If \( 0 \leq \alpha \leq \frac{\pi}{2} \) and \(\sin \left(\alpha - \frac{\pi}{12}\right) = \frac{1}{2}\), then \(\alpha\) is equal to:

  • (A) \(\frac{\pi}{6}\)
  • (B) \(\frac{\pi}{4}\)
  • (C) \(\frac{\pi}{3}\)
  • (D) \(\frac{5\pi}{12}\)
  • (E) \(\frac{7\pi}{12}\)
Correct Answer: (B) \(\frac{\pi}{4}\)
View Solution

Question 111:

The equation of the line passing through the point \((-9,5)\) and parallel to the line \(5x - 13y = 19\) is:

  • (A) \(5x - 13y + 110 = 0\)
  • (B) \(5x - 13y + 100 = 0\)
  • (C) \(5x - 13y + 65 = 0\)
  • (D) \(5x - 13y - 110 = 0\)
  • (E) \(5x - 13y - 100 = 0\)
Correct Answer: (A) \(5x - 13y + 110 = 0\)
View Solution

Question 112:

The radius of the circle with centre at \((-4, 0)\) and passing through the point \((2, 8)\) is:

  • (A) 6
  • (B) 8
  • (C) 10
  • (D) 12
  • (E) 14
Correct Answer: (C) 10
View Solution

Question 113:

The axis of a parabola is parallel to the y-axis and its vertex is at \((5, 0)\). If it passes through the point \((2, 3)\), then its equation is:

  • (A) \(y^2 = 3(x - 5)\)
  • (B) \(3y = (x - 5)^2\)
  • (C) \(3y^2 = x - 5\)
  • (D) \(y = 3(x - 5)^2\)
  • (E) \(y = 9(x - 5)^2\)
Correct Answer: (B) \(3y = (x - 5)^2\)
View Solution

Question 114:

The foci of the ellipse \(\frac{x^2}{49} + \frac{y^2}{24} = 1\) are:

  • (A) \( (7,0) \) and \( (-7,0) \)
  • (B) \( (6,0) \) and \( (-6,0) \)
  • (C) \( (4,0) \) and \( (-4,0) \)
  • (D) \( (5,0) \) and \( (-5,0) \)
  • (E) \( (3,0) \) and \( (-3,0) \)
Correct Answer: (D) \( (5,0) \) and \( (-5,0) \)
View Solution

Question 115:

The line \(y = 5x + 7\) is perpendicular to the line joining the points \((2, 12)\) and \((12, k)\). Then the value of \(k\) is equal to:

  • (A) 12
  • (B) -12
  • (C) 8
  • (D) -8
  • (E) 10
Correct Answer: (E) 10
View Solution

Question 116:

The centre of the hyperbola \(16x^2 - 4y^2 + 64x - 24y - 36 = 0\) is at the point:

  • (A) \((-2, -3)\)
  • (B) \((-4, -6)\)
  • (C) \( (2, 3) \)
  • (D) \( (4, 6) \)
  • (E) \( (2, 6) \)
Correct Answer: (A) \((-2, -3)\)
View Solution

Question 117:

The focus of the parabola \(y^2 + 4y - 8x + 20 = 0\) is at the point:

  • (A) \( (0, -2) \)
  • (B) \( (2, -2) \)
  • (C) \( (4, -2) \)
  • (D) \( (2, 0) \)
  • (E) \( (4, -4) \)
Correct Answer: (C) \( (4, -2) \)
View Solution

Question 118:

For a hyperbola, the vertices are at \( (6, 0) \) and \( (-6, 0) \). If the foci are at \( (2\sqrt{10}, 0) \) and \( -2\sqrt{10}, 0) \), then the equation of the hyperbola is:

  • (A) \(\frac{x^2}{36} - \frac{y^2}{76} = 1\)
  • (B) \(\frac{x^2}{76} - \frac{y^2}{36} = 1\)
  • (C) \(\frac{x^2}{6} - \frac{y^2}{2} = 1\)
  • (D) \(\frac{x^2}{4} - \frac{y^2}{36} = 1\)
  • (E) \(\frac{x^2}{36} - \frac{y^2}{4} = 1\)
Correct Answer: (E) \(\frac{x^2}{36} - \frac{y^2}{4} = 1\)
View Solution

Question 119:

If a line makes angles \(\alpha\), \(\beta\), and \(\gamma\) with the positive directions of the x, y, and z-axis respectively, then \(\cos 2\alpha + \cos 2\beta + \cos 2\gamma\) equals:

  • (A) 1
  • (B) -1
  • (C) 2
  • (D) -2
  • (E) 0
Correct Answer: (B) -1
View Solution

Question 120:

Let \( \vec{a}, \vec{b}, \vec{c} \) be three vectors. The angle between \( \vec{a} \) and \( \vec{b} \) is \( 30^\circ \), the angle between \( \vec{a} \) and \( \vec{b} + \vec{c} \) is \( 45^\circ \). If \( |\vec{b}| = \sqrt{6} \) and \( |\vec{c}| = 2\sqrt{2} \), then \( |\vec{b} + \vec{c}| \) is:

  • (A) 1
  • (B) 2
  • (C) 3
  • (D) 4
  • (E) 5
Correct Answer: } (E) 5
View Solution

Question 121:

The vectors \(\vec{a} = 4\mathbf{i} - 3\mathbf{j} - \mathbf{k}\) and \(\vec{b} = 3\mathbf{i} + 2\mathbf{j} + \lambda\mathbf{k}\) are perpendicular to each other. Then the value of \(\lambda\) is equal to:

  • (A) 3
  • (B) 4
  • (C) -3
  • (D) -4
  • (E) 6
Correct Answer: (E) 6
View Solution

Question 122:

The centre of a circle lies on the y-axis. If it passes through the points \( (-4, 3) \) and \( (3, -4) \), then its radius is:

  • (A) \( 7\sqrt{2} \)
  • (B) 4
  • (C) \( 4\sqrt{2} \)
  • (D) 5
  • (E) \( 5\sqrt{2} \)
Correct Answer: } (D) 5
View Solution

Question 123:

The point of intersection of the lines \(\frac{x-3}{2} = \frac{y-2}{2} = \frac{z-6}{1}\) and \(\frac{x-2}{3} = \frac{y-4}{2} = \frac{z-1}{3}\) is:

  • (A) \( (3,4,3) \)
  • (B) \( (7,6,6) \)
  • (C) \( (4,3,3) \)
  • (D) \( (10,11,10) \)
  • (E) \( (11,10,10) \)
Correct Answer: (E) \( (11,10,10) \)
View Solution

Question 124:

The angle between the lines \[ \frac{x-1}{6} = \frac{y-5}{8} = \frac{z-3}{10} \quad and \quad \frac{x+1}{2} = \frac{2y+3}{2} = \frac{z+3}{2} \]
is:

  • (A) \( \cos^{-1} \left( \frac{\sqrt{2}}{6} \right) \)
  • (B) \( \cos^{-1} \left( \frac{2\sqrt{2}}{3} \right) \)
  • (C) \( \cos^{-1} \left( \frac{\sqrt{2}}{3} \right) \)
  • (D) \( \cos^{-1} \left( \frac{1}{\sqrt{2}} \right) \)
  • (E) \( \cos^{-1} \left( \frac{\sqrt{3}}{2} \right) \)
Correct Answer: } (B) \( \cos^{-1} \left( \frac{2\sqrt{2}}{3} \right) \)
View Solution

Question 125:

The angle between \(\vec{a}\) and \(\vec{b}\) is \(\frac{\pi}{3}\). If \(\|\vec{a}\| = 5\) and \(\|\vec{b}\| = 10\), then \(\|\vec{a} + \vec{b}\|\) is equal to:

  • (A) \(7\sqrt{5}\)
  • (B) \(5\sqrt{5}\)
  • (C) 15
  • (D) \(5\sqrt{3}\)
  • (E) \(5\sqrt{7}\)
Correct Answer: (E) \(5\sqrt{7}\)
View Solution

Question 126:

Let \(f(x) = a^{3x}\) and \(a^5 = 8\). Then the value of \(f(5)\) is equal to:

  • (A) 64
  • (B) 128
  • (C) 256
  • (D) 512
  • (E) 1024
Correct Answer: (D) 512
View Solution

Question 127:

Let \( f(x) = \begin{cases} x^2 - \alpha, & if x < 1
\beta x - 3, & if x \geq 1 \end{cases} \). If \( f \) is continuous at \( x = 1 \), then the value of \( \alpha + \beta \) is:

  • (A) -2
  • (B) 2
  • (C) 4
  • (D) -4
  • (E) 0
Correct Answer: (C) 4
View Solution

Question 128:

The integral \(\int e^x \sqrt{e^x} \, dx\) equals:

  • (A) \(\frac{3}{2} e^x \sqrt{e^x} + C\)
  • (B) \(\frac{2}{3} e^x \sqrt{e^x} + C\)
  • (C) \(\frac{5}{2} e^{2x} \sqrt{e^x} + C\)
  • (D) \(\frac{2}{5} e^{2x} \sqrt{e^x} + C\)
  • (E) \(\frac{2}{3} e^{2x/3} + C\)
Correct Answer: (B) \(\frac{2}{3} e^x \sqrt{e^x} + C\)
View Solution

Question 129:

The area bounded by the parabola \(y = x^2 + 2\) and the lines \(y = x\), \(x = 1\) and \(x = 2\) (in square units) is:

  • (A) \(\frac{31}{6}\)
  • (B) \(\frac{29}{6}\)
  • (C) \(\frac{25}{6}\)
  • (D) \(\frac{17}{6}\)
  • (E) \(\frac{13}{6}\)
Correct Answer: (D) \(\frac{17}{6}\)
View Solution

Question 130:

Let \( f(x) = x \sin(x^4) \). Then \( f'(x) \) at \( x = \sqrt[4]{\pi} \) is equal to:

  • (A) \( 4\pi + 1 \)
  • (B) \( 4\pi \)
  • (C) \( -4\pi \)
  • (D) \( 4\pi - 1 \)
  • (E) \( 4\pi + 4 \)
Correct Answer: (C) \( -4\pi \)
View Solution

Question 131:

For \(1 \leq x < \infty\), let \(f(x) = \sin^{-1}\left(\frac{1}{x}\right) + \cos^{-1}\left(\frac{1}{x}\right)\). Then \(f'(x) =\)

  • (A) \(\frac{2}{x^2\sqrt{1-x^2}}\)
  • (B) \(\frac{-2}{x^2\sqrt{1-x^2}}\)
  • (C) \(\frac{2}{x\sqrt{1-x^2}}\)
  • (D) \(\frac{-2}{x\sqrt{1-x^2}}\)
  • (E) 0
Correct Answer: (E) 0
View Solution

Question 132:

The value of the limit \(\lim_{t \to 0} \frac{(5-t)^2 - 25}{t}\) is equal to:

  • (A) -10
  • (B) -5
  • (C) 10
  • (D) 5
  • (E) 0
Correct Answer: (A) -10
View Solution

Question 133:

A particle is moving along the curve \( y = 8x + \cos y \), where \( 0 \leq y \leq \pi \). If at a point the ordinate is changing 4 times as fast as the abscissa, then the coordinates of the point are:

  • (A) \(\left(\frac{\pi}{16}, \frac{\pi}{2}\right)\)
  • (B) \(\left(-\frac{1}{8}, 0\right)\)
  • (C) \(\left(\frac{1}{8}, 0\right)\)
  • (D) \(\left(-\frac{\pi}{2}, -\frac{\pi}{16}\right)\)
  • (E) \(\left(\frac{\pi}{2}, \frac{9\pi}{16}\right)\)
Correct Answer: (A) \(\left(\frac{\pi}{16}, \frac{\pi}{2}\right)\)
View Solution

Question 134:

The value of the limit \(\lim_{x \to 0} \frac{(2 + \cos 3x) \sin^2 x}{x \tan(2x)}\) is equal to:

  • (A) \(\frac{3}{2}\)
  • (B) 2
  • (C) \(\frac{1}{2}\)
  • (D) 3
  • (E) 0
Correct Answer: (A) \(\frac{3}{2}\)
View Solution

Question 135:

Evaluate the integral: \[ \int_{\frac{\pi}{5}}^{\frac{3\pi}{10}} \frac{\sqrt{\tan x}}{1 + \sqrt{\tan x}} \, dx \]

  • (A) \( \frac{\pi}{4} \)
  • (B) \( \frac{\pi}{5} \)
  • (C) \( \frac{\pi}{10} \)
  • (D) \( \frac{\pi}{20} \)
  • (E) \( \frac{\pi}{2} \)
Correct Answer:(D) \( \frac{\pi}{20} \)
View Solution

Question 136:

Let \[ f(x) = \begin{cases} x\left( \frac{\pi}{2} + x \right), & if x \geq 0
x\left( \frac{\pi}{2} - x \right), & if x < 0 \end{cases} \]
Then \( f'(-4) \) is equal to:

  • (A) \( \frac{\pi - 8}{2} \)
  • (B) \( \frac{16 + \pi}{2} \)
  • (C) \( \frac{8 + \pi}{2} \)
  • (D) \( \frac{\pi - 16}{2} \)
  • (E) \( \pi - 16 \)
Correct Answer:(B) \( \frac{16 + \pi}{2} \)
View Solution

Question 137:

Let \[ f(x) = \frac{|5 - x|(x + 5)}{\tan(x - 5)} \quad for \quad x \neq 5. \]
Then \[ \lim_{x \to 5} f(x) is equal to: \]

  • (A) 10
  • (B) -10
  • (C) 5
  • (D) -5
  • (E) 0
Correct Answer:(A) 10
View Solution

Question 138:

The function \[ f(x) = x^{3/5}(5x - 12) \]
is increasing in the set:

  • (A) \( \left( \frac{5}{12}, \infty \right) \)
  • (B) \( (-\infty, 0) \cup (9, \infty) \)
  • (C) \( (-\infty, 0) \cup \left( \frac{5}{12}, \infty \right) \)
  • (D) \( \left( 0, \frac{9}{10} \right) \)
  • (E) \( \left( \frac{9}{10}, \infty \right) \)
Correct Answer:(E) \( \left( \frac{9}{10}, \infty \right) \)
View Solution

Question 139:

The value of \[ \lim_{x \to 1} \frac{\frac{1}{2x + 1} - \frac{1}{3}}{x - 1} \]
is equal to:

  • (A) \( \frac{-2}{9} \)
  • (B) \( \frac{2}{9} \)
  • (C) \( \frac{-2}{3} \)
  • (D) \( \frac{2}{3} \)
  • (E) 0
Correct Answer:(A) \( \frac{-2}{9} \)
View Solution

Question 140:

The critical points of the function \( f(x) = (x-3)^3(x+2)^2 \) are:

  • (A) \(-1, 3, -2\)
  • (B) \(1, 3, -2\)
  • (C) \(3, 3, -2\)
  • (D) \(0, 3, -2\)
  • (E) \(0, -3, 2\)
Correct Answer: (D) \(0, 3, -2\)
View Solution

Question 141:

The integrating factor of the differential equation \[ x \frac{dy}{dx} + 2y = x e^x \]
is:

  • (A) \( \log_e x \)
  • (B) \( \log_e 2x \)
  • (C) \( x \)
  • (D) \( x^2 \)
  • (E) \( 2x \)
Correct Answer:(D) \( x^2 \)
View Solution

Question 142:

The minimum value of the function \( f(x) = x^4 - 4x - 5 \), where \( x \in \mathbb{R} \), is:

  • (A) -7
  • (B) 7
  • (C) 8
  • (D) -8
  • (E) 0
Correct Answer: (D) -8
View Solution

Question 143:

\[ \int_0^{\frac{\pi}{4}} (\tan^3 x + \tan^5 x) \, dx \]

  • (A) \(\frac{5}{12}\)
  • (B) \(\frac{1}{3}\)
  • (C) \(\frac{1}{4}\)
  • (D) \(\frac{1}{6}\)
  • (E) \(\frac{1}{12}\)
Correct Answer: (C) \(\frac{1}{4}\)
View Solution

Question 144:

Let \( I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\tan^2 x}{1+5^x} \, dx \). Then:

  • (A) \( I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \tan^2 x \, dx \)
  • (B) \( 2I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \tan^2 x \, dx \)
  • (C) \( I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{1+5^x} \, dx \)
  • (D) \( 2I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} 5 \tan^2 x \, dx \)
  • (E) \( 2I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{1+5^x} \, dx \)
Correct Answer: (B) \( 2I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \tan^2 x \, dx \)
View Solution

Question 145:

\[ \int \left( \frac{\log_e t}{1+t} + \frac{\log_e t}{t(1+t)} \right) dt \]

  • (A) \(\frac{(\log_e t)^2}{2} + C\)
  • (B) \(\frac{t^2 (\log_e t)^2}{2} + C\)
  • (C) \(\frac{(1+\log_e t)^2}{2} + C\)
  • (D) \(\frac{(\log_e t)^2}{2t^2} + C\)
  • (E) \(\frac{(\log_e t)^2}{2} + \frac{1}{(1+t)^2} + C\)
Correct Answer: (A) \(\frac{(\log_e t)^2}{2} + C\)
View Solution

Question 146:

Evaluate the integral: \[ \int \frac{x^2 - 1}{x^4 + 3x^2 + 1} \, dx \]

  • (A) \( \frac{1}{\sqrt{3}} \tan^{-1} \left( \frac{x^2 + 1}{\sqrt{3}x} \right) + C \)
  • (B) \( \tan^{-1} \left( x^2 - 1 \right) + C \)
  • (C) \( \tan^{-1} \left( \frac{x - 1}{x} \right) + C \)
  • (D) \( \frac{1}{\sqrt{5}} \tan^{-1} \left( \frac{x^2 + 1}{\sqrt{5}x} \right) + C \)
  • (E) \( \tan^{-1} \left( \frac{x + 1}{x} \right) + C \)
Correct Answer:(E) \( \tan^{-1} \left( \frac{x + 1}{x} \right) + C \)
View Solution

Question 147:

Evaluate the integral:

  • (A) \( \frac{1}{2} \sin \left( \sqrt{4x^2 + 7} \right) + C \)
  • (B) \( \frac{7}{2} \sin \left( \sqrt{4x^2 + 7} \right) + C \)
  • (C) \( \sin \left( \sqrt{4x^2 + 7} \right) + C \)
  • (D) \( \frac{1}{4} \sin \left( \sqrt{4x^2 + 7} \right) + C \)
  • (E) \( \frac{7}{4} \sin \left( \sqrt{4x^2 + 7} \right) + C \)
Correct Answer:(C) \( \sin \left( \sqrt{4x^2 + 7} \right) + C \)
View Solution

Question 148:

The general solution of the differential equation \( \frac{dy}{dx} = xy - 2x - 2y + 4 \) is:

  • (A) \(\frac{1}{(y-2)^2} = \frac{(x-2)^2}{2} + C\)
  • (B) \(\log_e|y-2| = \frac{(x-2)^2}{2} + C\)
  • (C) \((y-2)^2 = \frac{(x-2)^2}{2} + C\)
  • (D) \(\log_e|y-2| = C\)
  • (E) \(\log_e|y-2| = (x-2)^2 + C\)
Correct Answer: (B) \(\log_e|y-2| = \frac{(x-2)^2}{2} + C\)
View Solution

Question 149:

Let \( f(x) = \frac{x^2 + 40}{7x} \), \( x \neq 0 \), \( x \in [4,5] \). The value of \( c \) in \( [4,5] \) at which \( f'(c) = -\frac{1}{7} \) is equal to:

  • (A) \( 3\sqrt{2} \)
  • (B) \( 2\sqrt{5} \)
  • (C) \( \frac{49}{\sqrt{3}} \)
  • (D) \( \sqrt{21} \)
  • (E) \( 2\sqrt{6} \)
Correct Answer: (B) \( 2\sqrt{5} \)
View Solution

Question 150:

If \( f'(x) = 4x\cos^2(x) \sin\left(\frac{x}{4}\right) \), then \( \lim_{x \to 0} \frac{f(\pi + x) - f(\pi)}{x} \) is equal to:

  • (A) \( 4\pi \)
  • (B) \( \sqrt{2}\pi \)
  • (C) \( 2\pi \)
  • (D) \( 2\sqrt{2}\pi \)
  • (E) \( 0 \)
Correct Answer: (D) \( 2\sqrt{2}\pi \)
View Solution


KEAM Questions

  • 1.
    If \( A \) is a \( 3 \times 3 \) matrix and \( |B| = 3|A| \) and \( |A| = 5 \), then find \( \left| \frac{\text{adj} B}{|A|} \right| \).

      • 3
      • 9
      • 1
      • 5

    • 2.
      Evaluate the following limit: $ \lim_{x \to 0} \frac{1 + \cos(4x)}{\tan(x)} $

        • 2
        • 1
        • 0
        • 4

      • 3.
        If $ \cos^{-1}(x) - \sin^{-1}(x) = \frac{\pi}{6} $, then find } $ x $.

          • \( \frac{1}{2} \)
          • \( \frac{\sqrt{3}}{2} \)
          • \( \frac{1}{\sqrt{2}} \)
          • \( \frac{\sqrt{2}}{2} \)

        • 4.
          Given that \( \mathbf{a} \times (2\hat{i} + 3\hat{j} + 4\hat{k}) = (2\hat{i} + 3\hat{j} + 4\hat{k}) \times \mathbf{b} \), \( |\mathbf{a} + \mathbf{b}| = \sqrt{29} \), \( \mathbf{a} \cdot \mathbf{b} = ? \)

            • 0
            • 5
            • 10
            • 15

          • 5.
            Evaluate the integral: \[ \int \frac{2x^2 + 4x + 3}{x^2 + x + 1} \, dx \]

              • \( \frac{2}{3} x^3 + 2x + C \)
              • \( \frac{1}{3} x^3 + 3x + C \)
              • \( \frac{1}{3} x^3 + x + C \)
              • \( \frac{2}{3} x^3 + 3x + C \)

            • 6.
              Evaluate the integral: \[ \int \frac{\sin(2x)}{\sin(x)} \, dx \]

                • \( 2 \sin(x) + C \)
                • \( 2 \log \left| \tan \left( \frac{x}{2} \right) \right| + C \)
                • \( 2 \log \left| \cot \left( \frac{x}{2} \right) \right| + C \)
                • \( 2 \cos(x) + C \)

              Fees Structure

              Structure based on different categories

              CategoriesState
              General1000
              sc500

              In case of any inaccuracy, Notify Us! 

              Comments


              No Comments To Show