AP ECET 2017 Electrical & Electronics Engineering Question Paper with Answer Key PDF (May 3)

Collegedunia Team's profile photo

Collegedunia Team

Content Curator | Updated 3+ months ago

AP ECET 2017 Electrical & Electronics Engineering Question Paper with Answer Key pdf is available for download. The exam was conducted by Jawaharlal Nehru Technological University, Ananthapur on May 3, 2017 in the Forenoon Session 10 AM to 1 PM. The question paper comprised a total of 200 questions.

AP ECET 2017 Electrical & Electronics Engineering Question Paper with Answer Key PDF

AP ECET 2017 Electrical & Electronics Engineering Question Paper PDF AP ECET 2017 Electrical & Electronics Engineering Answer Key PDF
Download PDF Download PDF


AP ECET Previous Year Question Paper with Answer Key PDFs

Similar B.Tech Exam Question Papers:

AP ECET Questions

  • 1.
    The curvature of the straight line \( y = 2x + 3 \) at \( (1, 5) \) is:

      • 2
      • 0
      • \( \frac{1}{2} \)
      • 3

    • 2.
      The centre of the circle of curvature for the curve \( y = e^x \) at \( (0, 1) \) is:

        • \( (2, 3) \)
        • \( (-2, 3) \)
        • \( (2, -3) \)
        • \( (-2, -3) \)

      • 3.
        If $I_{n} = \int \frac{\sin nx}{\sin x} dx $ for $n = 1, 2 , 3,...,$ then $I_6$ =

          • $\frac{3}{5} \sin3x + \frac{8}{3} \sin^{5} x -\sin x +c $
          • $\frac{2}{5} \sin 5x - \frac{5}{3} \sin^{3} x - 2 \sin x +c $
          • $\frac{2}{3} \sin 5x - \frac{8}{3} \sin^{5} x + 4 \sin x +c $
          • $\frac{2}{5} \sin 5 x -\frac{8}{3} \sin^{3} x + 4 \sin x +c $

        • 4.
          A solid copper sphere of density $\rho$, specific heat capacity $C$ and radius $r$ is initially at $200\, K$. It is suspended inside a chamber whose walls are at $0\, K$. The time required (in (is) for the temperature of the sphere to drop to $100 \,K$ is ($\sigma$ is Stefan's constant and all the quantities are in SI units)

            • $48 \frac{r\rho C}{\sigma}$
            • $\frac{1}{48} \frac{r\rho C}{\sigma}$
            • $\frac{27}{7} \frac{r\rho C}{\sigma}$
            • $\frac{7}{27} \frac{r\rho C}{\sigma}$

          • 5.
            If $I(x)=\int x^{2}(\log x)^{2} d x$ and $I( 1)=0$, then $I(x)$

              • $\frac{x^{3}}{18} \left[ 8\left(\log x\right)^{2} -3\log x\right] + \frac{7}{18} $
              • $\frac{x^{3}}{27} \left[9\left(\log x\right)^{2} +6 \log x\right] - \frac{2}{27} $
              • $\frac{x^{3}}{27} \left[9\left(\log x\right)^{2} - 6 \log x+2\right]- \frac{2}{27} $
              • $\frac{x^{3}}{27} \left[9 \left(\log x\right)^{2} -6 \log x +2 \right] - \frac{2}{27}$

            • 6.
              Let $A, G, H$ and $S$ respectively denote the arithmetic mean, geometric mean, harmonic mean and the sum of the numbers $a_1 , a_2 , a_3 ....., a_n$ . Then the value of at which the function $f(x) =\displaystyle \sum^n_{k =1} (x -a_k)^2$ has minimum is

                • S
                • H
                • G
                • A

              Fees Structure

              Structure based on different categories

              CategoriesState
              General600
              sc500

              In case of any inaccuracy, Notify Us! 

              Comments


              No Comments To Show