Tripura JEE 2024 Mathematics Set P Question Paper with Answer Key PDFs

Shivam Yadav's profile photo

Shivam Yadav

Educational Content Expert | Updated 3+ months ago

Tripura JEE 2024 Mathematics Set P Question paper with answer key pdf  is available for download. The exam was successfully organized by Tripura Board of Joint Entrance Examination (TBJEE). The question paper comprised a total of 30 questions. There is Multiple Choice Questions (MCQs) in exam.Each question will carry 4 (four) marks, i.e. total marks will be of 120 (30×4) for each subject.

Tripura JEE 2024 Mathematics Set P Question Paper with Answer Key PDFs

Tripura JEE 2024 Mathematics Question Paper with Answer Key

download iconDownload

Check Solution 
Tripura JEE 2024 maths set p

Question 1:

Let \( \phi_1(x) = e^{\sin x}, \phi_2(x) = e^{\phi_1(x)}, \ldots, \phi_{n+1}(x) = e^{\phi_n(x)}, \forall n \geq 1.\) Then for any fixed \( n \), the expression \( \frac{d}{dx} \phi_n(x) \) is:

  • (1) \( \phi_n(x) \cdot \phi_{n-1}(x) \)
  • (2) \( \phi_n(x) \cdot \phi_{n-1}(x) \cdot \ldots \cdot \phi_1(x) \cos x \)
  • (3) \( \phi_n(x) \cdot \phi_{n-1}(x) \cdot \ldots \cdot \varphi_1(x) \sin x \)
  • (4) \( \phi_n(x) \cdot \phi_{n-1}(x) \cdot \ldots \cdot \varphi_1(x) e^{\sin x} \)
Correct Answer: (B) \( \phi_n(x) \cdot \phi_{n-1}(x) \cdot \ldots \cdot \phi_1(x) \cos x \) View Solution

Question 2:

The value(s) of \( c \in (1, 2) \), where the conclusion of Lagrange’s M.V.T. is satisfied for the function \( f(x) = x^2 + 3x + 2 \) in \([1,2]\), is/are:

  • (A) \( \left( -\frac{3}{2}, \frac{1}{2} \right) \)
  • (B) \( \left( \frac{1}{2}, \frac{3}{2} \right) \)
  • (C) \( \left( -\frac{1}{2} \right) \)
  • (D) \( \left( \frac{3}{2} \right) \)
Correct Answer: (A) \( \left( -\frac{3}{2}, \frac{1}{2} \right) \)
View Solution

Question 3:

Let the function \( f(x) \) be defined as follows:
\[ f(x) = \begin{cases} (1 + | \sin x |)^{\frac{a}{|\sin x|}}, & -\frac{\pi}{6} < x < 0
b, & x = 0
\frac{\tan 2x}{\tan 3x}, & 0 < x < \frac{\pi}{6} \end{cases} \]

Then the values of \( a \) and \( b \) are:

  • (A) \( a = -\frac{2}{3}, b = \frac{2}{3} \)
  • (B) \( a = \frac{2}{3}, b = e^{\frac{2}{3}} \)
  • (C) \( a = e^{\frac{2}{3}}, b = \frac{2}{3} \)
  • (D) \( a = \frac{2}{3}, b = e^{-\frac{2}{3}} \)
Correct Answer: (B) \( a = \frac{2}{3}, b = e^{\frac{2}{3}} \)
View Solution

Question 4:

If \[ \int \frac{3e^x + 5e^{-x}}{4e^x - 5e^{-x}} \, dx = Ax + B \ln |4e^{2x} - 5| + C \]
then, the values of \( A \), \( B \), and \( C \) are:

  • (A) \( A = -1, B = -\frac{7}{8}, C = constant of integration \)
  • (B) \( A = 1, B = \frac{7}{8}, C = constant of integration \)
  • (C) \( A = -1, B = \frac{7}{8}, C = constant of integration \)
  • (D) \( A = \frac{7}{8}, B = \frac{3}{8}, C = constant of integration \)
Correct Answer: (A) \( A = -1, B = -\frac{7}{8}, C = \text{constant of integration} \)
View Solution

Question 5:

Evaluate the integral: \[ \int_0^2 |x^2 + x - 2| \, dx \]

  • (A) \( \frac{11}{3} \)
  • (B) \( \frac{-11}{3} \)
  • (C) \( \frac{1}{3} \)
  • (D) \( \frac{-1}{3} \)
Correct Answer: (A) \( \frac{11}{3} \)
View Solution

Question 6:

The differential equation of all circles of radius \( a \) is:

  • (A) \( \left( 1 + \frac{dy}{dx} \right)^3 = a^2 \left( \frac{d^2 y}{dx^2} \right)^2 \)
  • (B) \( \left( 1 - \left( \frac{dy}{dx} \right)^2 \right)^3 = a^2 \left( \frac{d^2 y}{dx^2} \right)^2 \)
  • (C) \( \left( 1 - \frac{dy}{dx} \right)^3 = a^2 \left( \frac{d^2 y}{dx^2} \right)^2 \)
  • (D) \( \left( 1 + \frac{dy}{dx} \right)^3 = a^2 \left( \frac{d^2 y}{dx^2} \right)^2 \)
Correct Answer: (A) \( \left( 1 + \frac{dy}{dx} \right)^3 = a^2 \left( \frac{d^2 y}{dx^2} \right)^2 \)
View Solution

Question 7:

The range of the function \( f(x) = 7 - x\cdot P_{x-3} \) is:

  • (A) \( \{1, 2, 3, 4, 5, 6\} \)
  • (B) \( \{1, 2, 3, 4\} \)
  • (C) \( \{1, 2\} \)
  • (D) \( \{1, 2, 3\} \)
Correct Answer: (C) \( \{1, 2\} \)
View Solution

Question 8:

If \( f(x) \) and \( g(x) \) are two functions such that \( f(x) + g(x) = e^x \) and \( f(x) - g(x) = e^{-x} \), then:

  • (A) \( f(x) \) is odd function, \( g(x) \) is odd function
  • (B) \( f(x) \) is even function, \( g(x) \) is even function
  • (C) \( f(x) \) is even function, \( g(x) \) is odd function
  • (D) \( f(x) \) is odd function, \( g(x) \) is even function
Correct Answer: (C) \( f(x) \) is even function, \( g(x) \) is odd function
View Solution

Question 9:

The mapping \( f: \mathbb{R} \to \mathbb{R} \) such that \( f(x) = |x - 1| \), \( x \in \mathbb{R} \) is:

  • (A) one-one, onto
  • (B) many-one, onto
  • (C) one-one, into
  • (D) neither one-one nor onto
Correct Answer: (D) neither one-one nor onto
View Solution

Question 10:

The area bounded by the curves \( y = \log_e x \) and \( y = (\log_e x)^2 \) is:

  • (A) \( (3 - e) \) sq. units
  • (B) \( (e - 3) \) sq. units
  • (C) \( \frac{1}{2} (3 - e) \) sq. units
  • (D) \( \frac{1}{2} (e - 3) \) sq. units
Correct Answer: (C) \( \frac{1}{2} (3 - e) \) sq. units
View Solution

Question 11:

For what value of \( n \), the curve \[ \left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2 touches the straight line \frac{x}{a} + \frac{y}{b} = 2 at the point (a, b)? \]

  • (A) \( n = 3 \)
  • (B) Any value of \( n \)
  • (C) \( n = 2 \)
  • (D) \( n = 4 \)
Correct Answer: (C) \( n = 2 \)
View Solution

Question 12:

The function \( f(x) = x^3 - 3x \) is:

  • (A) increasing in \( (-\infty, -1) \cup (1, \infty) \) and decreasing in \( (-1, 1) \)
  • (B) decreasing in \( (-\infty, -1) \cup (1, \infty) \) and increasing in \( (-1, 1) \)
  • (C) increasing in \( (0, \infty) \) and decreasing in \( (-\infty, 0) \)
  • (D) decreasing in \( (0, \infty) \) and increasing in \( (-\infty, 0) \)
Correct Answer: (A) increasing in \( (-\infty, -1) \cup (1, \infty) \) and decreasing in \( (-1, 1) \)
View Solution

Question 13:

If \( A \) is the A.M. of the roots of the equation \( x^2 - 2ax + b = 0 \) and \( G \) is the G.M. of the roots of the equation \( x^2 - 2bx + a^2 = 0 \), \( a > 0 \), then:

  • (A) \( A > G \)
  • (B) \( A = G \)
  • (C) \( A < G \)
  • (D) None of these
Correct Answer: (A) \( A > G \)
View Solution

Question 14:

Out of 6 boys and 4 girls, a committee of 5 members is to be formed. In how many ways can this be done, if at least 2 girls are included?

  • (A) 126
  • (B) 186
  • (C) 140
  • (D) 156
Correct Answer: (B) 186
View Solution

Question 15:

\( (666 \ldots up to n digits)^2 + (888 \ldots up to n digits) \) is:

  • (A) \( \frac{9}{4}(10^n - 1) \)
  • (B) \( \frac{9}{4}(10^n - 1)^2 \)
  • (C) \( \frac{4}{9}(10^{2n} + 1) \)
  • (D) \( \frac{4}{9}(10^{2n} - 1) \)
Correct Answer: (D) \( \frac{4}{9}(10^{2n} - 1) \)
View Solution

Question 16:

Sum of the last 40 coefficients in the expansion of \( (1 + x)^{79} \), when expanded in ascending power of \( x \) is:

  • (A) \( 2^{79} \)
  • (B) \( 2^{40} \)
  • (C) \( 2^{39} \)
  • (D) \( 2^{78} \)
Correct Answer: (B) \( 2^{40} \)
View Solution

Question 17:

  • (A) \( -1 \)
  • (B) \( 2 \)
  • (C) \( 1 \)
  • (D) \( 0 \)
Correct Answer: (C) \( 1 \)
View Solution

We are given that \( l, m, n \) are the \( p \)-th, \( q \)-th, and \( r \)-th terms of a G.P. In a geometric progression, the general form of the \( n \)-th term is: \[ t_n = a \cdot r^{n-1}, \]
where \( a \) is the first term and \( r \) is the common ratio.

Now, we are dealing with logarithmic expressions involving these terms. To solve the problem, we use the properties of logarithms and the fact that the terms are in G.P.

For a G.P. with terms \( l, m, n \), we have the following relations: \[ m = \sqrt{l \cdot n}, \]
since \( m \) is the geometric mean of \( l \) and \( n \).

Taking logarithms of both sides: \[ \log m = \frac{1}{2} (\log l + \log n). \]
Now, applying the properties of logarithms, we solve the equation: \[ \left| \log l \, p \, 1 \right| = 1. \]

Thus, the correct answer is \( \boxed{1} \). Quick Tip: When working with logarithms in geometric progressions, recall that the geometric mean relates to the arithmetic mean of the logarithms of the terms.


Question 18:

For what values of \( \lambda \) and \( \mu \), the following system of equations has a unique solution?
\[ 2x + 3y + 5z = 9 \] \[ 7x + 3y - 2z = 8 \] \[ 2x + 3y + \lambda z = \mu \]

  • (A) \( \lambda \neq 5 \), any value of \( \mu \)
  • (B) \( \lambda = 5 \), \( \mu = 9 \)
  • (C) \( \lambda \neq 5 \), \( \mu = 9 \)
  • (D) \( \lambda = 5 \), any value of \( \mu \)
Correct Answer: (B) \( \lambda = 5 \), \( \mu = 9 \)
View Solution

Question 19:

If \( 0 < \theta < \pi \) and \( \cos \theta + \sin \theta = \frac{1}{2} \), then the value of \( \tan \theta \) is:

  • (A) \( \frac{1 - \sqrt{7}}{4} \)
  • (B) \( \frac{4 - \sqrt{7}}{3} \)
  • (C) - \( \frac{4 + \sqrt{7}}{3} \)
  • (D) \( \frac{1 + \sqrt{7}}{4} \)
Correct Answer: (B) \( \frac{4 - \sqrt{7}}{3} \)
View Solution

Question 20:

In a triangle \( ABC \), if angles \( A \), \( B \), and \( C \) are in A.P., then \( \frac{a + c}{b} \) is equal to:

  • (A) \( \frac{2 \sin \frac{A - C}{2}}{2} \)
  • (B) \( 2 \cos \frac{A - C}{2} \)
  • (C) \( \frac{\cos \frac{A - C}{2}}{2} \)
  • (D) \( \sin \frac{A - C}{2} \)
Correct Answer: (B) \( 2 \cos \frac{A - C}{2} \)
View Solution

Question 21:

The value of \[ \tan^{-1} \left( \frac{\sin 2 - 1}{\cos 2} \right) \]
is:

  • (A) \( 1 - \frac{\pi}{4} \)
  • (B) \( \frac{\pi}{2} - 1 \)
  • (C) \( 2 - \frac{\pi}{2} \)
  • (D) \( \frac{\pi}{4} - 1 \)
Correct Answer: (A) \( 1 - \frac{\pi}{4} \)
View Solution

Question 22:

The equation of the image of the line \( 2y - x = 1 \) obtained by the reflection on the line \( 4y - 2x = 5 \) is:

  • (A) \( 2y - x = 4 \)
  • (B) \( 2x - y = 4 \)
  • (C) \( 2y + x = 4 \)
  • (D) \( 2x + y = 4 \)
Correct Answer: (A) \( 2y - x = 4 \)
View Solution

Question 23:

The equation of the circle of radius 3 units which touches the circles \( x^2 + y^2 - 6|x| = 0 \) is:

  • (A) \( x^2 + y^2 + 6\sqrt{3}y - 18 = 0 \) or \( x^2 + y^2 - 6\sqrt{3}y - 18 = 0 \)
  • (B) \( x^2 + y^2 + 4\sqrt{3}y + 18 = 0 \) or \( x^2 + y^2 - 4\sqrt{3}y + 18 = 0 \)
  • (C) \( x^2 + y^2 + 6\sqrt{3}y + 18 = 0 \) or \( x^2 + y^2 - 6\sqrt{3}y + 18 = 0 \)
  • (D) \( x^2 + y^2 + 4\sqrt{3}y - 18 = 0 \) or \( x^2 + y^2 - 4\sqrt{3}y - 18 = 0 \)
Correct Answer: (C) \( x^2 + y^2 + 6\sqrt{3}y + 18 = 0 \) or \( x^2 + y^2 - 6\sqrt{3}y + 18 = 0 \)
View Solution

Question 24:

The angle between the lines joining the foci of an ellipse to one particular extremity of the minor axis is \( 90^\circ \). The eccentricity of the ellipse is:

  • (A) \( \frac{1}{8} \)
  • (B) \( \frac{1}{\sqrt{3}} \)
  • (C) \( \frac{\sqrt{2}}{3} \)
  • (D) \( \frac{1}{\sqrt{2}} \)
Correct Answer: (B) \( \frac{1}{\sqrt{3}} \)
View Solution

Question 25:

The direction ratios of the normal to the plane passing through the points \[ (1, 2, -3), \quad (1, -2, 1) \quad and parallel to the line \quad \frac{x - 2}{2} = \frac{y + 1}{3} = \frac{z}{4} is: \]

  • (A) \( (-2, 0, -3) \)
  • (B) \( (14, -8, -1) \)
  • (C) \( (2, 3, 4) \)
  • (D) \( (1, -2, -3) \)
Correct Answer: (D) \( (1, -2, -3) \)
View Solution

Question 26:

The area of a parallelogram whose diagonals are given by \( \vec{u} + \vec{v} \) and \( \vec{v} + \vec{w} \), where: \[ \vec{u} = 2\hat{i} - 3\hat{j} + \hat{k}, \quad \vec{v} = -\hat{i} + \hat{k}, \quad \vec{w} = 2\hat{j} - \hat{k} \]
is:

  • (A) \( \sqrt{14} \) sq. unit
  • (B) \( \sqrt{21} \) sq. unit
  • (C) \( \frac{1}{2} \sqrt{21} \) sq. unit
  • (D) \( \frac{1}{2} \sqrt{14} \) sq. unit
Correct Answer: (B) \( \sqrt{21} \) sq. unit
View Solution

Question 27:

The shortest distance between the lines \[ \frac{x + 1}{1} = \frac{y - 3}{-1} = \frac{z - 1}{-1} \quad and \quad \frac{x}{3} = \frac{y - 1}{2} = \frac{z + 1}{-1} \]
is:

  • (A) \( \frac{3}{\sqrt{16}} \) unit
  • (B) \( \frac{3}{\sqrt{14}} \) unit
  • (C) \( \frac{3}{\sqrt{38}} \) unit
  • (D) \( \frac{1}{\sqrt{3}} \) unit
Correct Answer: (B) \( \frac{3}{\sqrt{14}} \) unit
View Solution

Question 28:

If the probability for A to fail in an examination is 0.2 and that for B is 0.3, then the probability that either A or B fails is:

  • (A) \( \leq 0.4 \)
  • (B) \( \leq 0.25 \)
  • (C) \( \leq 0.5 \)
  • (D) \( \leq 0.7 \)
Correct Answer: (C) \( \leq 0.5 \)
View Solution

Question 29:

If the probability density function of a random variable is given by \[ f(x) = \begin{cases} 12x^2(1 - x), & 0 \leq x \leq 1
0, & elsewhere \end{cases} \]
then the mean and variance are respectively:

  • (A) \( 0.6, 0.4 \)
  • (B) \( 0.4, 0.6 \)
  • (C) \( 0.2, 0.6 \)
  • (D) \( 0.6, 0.2 \)
Correct Answer: (B) \( 0.4, 0.6 \)
View Solution

Question 30:

Let the two variables \( x \) and \( y \) satisfy the following conditions: \[ x + y \leq 50, \quad x + 2y \leq 80, \quad 2x + y \geq 20, \quad x, y \geq 0. \]
Then the maximum value of \( Z = 4x + 3y \) is:

  • (A) 120
  • (B) 170
  • (C) 200
  • (D) 210
Correct Answer: (C) 200
View Solution


Other Exam Question Papers:

Fees Structure

Structure based on different categories

CategoriesState
General550
sc450

In case of any inaccuracy, Notify Us! 

Comments


No Comments To Show